SYNTHESIS AND MICROWAVE PROPERTIES OF THE SUBSTITUTED MgTiO, CERAMICS

V. Parvanova

University of Chemical Technology and Metallurgy 8 Kl. Ohridski, 1756 Sofia, Bulgaria E-mail: vparvanova@hotmail.com

Received 20 March 2006 Accepted 23 April 2006

ABSTRACT

A low-temperature microwave ceramic with the following composition was synthesized: $Mg_{1-x}(Li_{0.5}La_{0.5})_xTiO_3$ and $MgTi_{1-x}(Cr_{0.5}Ta_{0.5})_xO_3 + 0.4\% B_2O_3$. The optimum conditions of obtaining were determined. The most important microwave properties were studied, such as: dielectric permittivity, quality factor, temperature coefficient of frequency, density at $T_{cal} = 1250$, 1300, 1350, 1400° C and frequency 8 - 10 GHz. By increasing the $(Li_{0.5}La_{0.5})^{2+}$ concentration the materials density and permittivity also increase ($\varepsilon_r = 26$, $T_{cal} = 1250^\circ$ C), the quality factor reduces, and the temperature stability of resonators is improved ($\tau_r = 0$ ppm ° C^1 with x = 0.18 mol for $T_{cal} = 1250-1350^\circ$ C.). The substitution of Ti^{4+} for $(Cr_{0.5}Ta_{0.5})^{4+}$ results a temperature compensation of material as with x = 0.10 mol $\tau_r = -11$, 3 ppm ° C^1 Q = 5000.

Keywords: synthesis, microwave materials, substituted MgTiO, microwave characteristics.

INTRODUCTION

The materials used for dielectric resonators are required to have dielectric properties as follows: permittivity (E) greated than 20, high Q value greater than 3000 (at 10 GHz) and very small temperature coefficient (τ_c) [1]. The polycomponent microwave materials based on MgTiO₃ have the properties mentioned above. And besides they are obtained by a relatively simple technology, have a good repeatability of parameters, they are widely used, they are economical and also are environmentally appropriate dielectrics. MgTiO₃, however, has a low permittivity $\varepsilon_{r} = 17$ and temperature coefficient of frequency $\tau_{\rm f}$ = -45 ppm °C⁻¹ [2]. Reasonable efforts were made in a number of publications to eliminate these defects of MgTiO₃. For example, in [1] the system xMgTiO₃-(Na₁₁) $_{2}$ Ln $_{1/2}$)TiO $_{3}$ was obtained (where Ln = La $^{3+}$, Pr $^{3+}$, Nd $^{3+}$, Sm³⁺) and the following parameters were measured: $\varepsilon_r =$ 22 - 25, Qxf =5500 - 2800 GHz and $\tau_r \rightarrow 0$. Through introducing La, Cr, CaTiO₃, etc. in [3-6] a compromise of properties was achieved. [7-9] may be of interest, where the MgTiO₃- ceramic, MgTiO₃-CaTiO₃ was synthesized with additions of ZnO, SnO₂, SiO₂ and B₂O₃ by the so called technology of low-temperature co-fired ceramic (LTCC).

This study is aimed at synthesizing by the peroxo method a low-temperature microwave ceramic based on MgTiO3. The addition of B2O3 will contribute for the reducing of the calcination temperature. It is well known that a MgTiO3-ceramic is obtained at T=1450 - 1500°C. By introducing substitutions from (Li0.5La0.5)2+ and (Cr0.5Ta0.5)4+ it is expected to control the temperature coefficient of frequency in order to obtain temperature stable resonators ($\tau_r \rightarrow 0$). In this sense the tasks set are of particular scientific and practical interest.

EXPERIMENTAL

The MgTiO₃ were synthesized by the peroxo method [10]. The essence of the method can be illustrated with the following chemical reaction:

$$\begin{array}{cccc} \operatorname{TiCl}_{4} + \operatorname{Mg(CH_{3}COO)}_{3} + \operatorname{H}_{2}\operatorname{O}_{2} + \operatorname{OH}^{-} \rightarrow \\ \operatorname{Mg_{2}[Ti_{2}(O_{2})_{4}(OH)_{4}]\cdot 4H_{2}O} & \xrightarrow{t} & \\ \operatorname{MgTiO_{3} + O_{2} + H_{2}O} & \xrightarrow{} & \end{array}$$

A 20 % solution of $Mg(CH_3COO)_2$ and a 30 % solution of H_2O_2 in a mol ratio of 2:2:10 were added to a 30 % solution of $TiCl_4$ in HCl. It was alkalized to pH

= 10 - 11 with a 12 % solution of NH₃. A temperature of 10 - 15°C was maintained during the synthesis. Amorphous sediment of Mg-peroxotitanate was obtained. The latter was used as a precursor for obtaining MgTiO₃. For this purpose the dried sediment (in an aerial environment at T=20°C) with composition Mg,[Ti,(O,)4(OH)4]·4H,O was subjected to a thermal decomposition at T= 600°C from 4 h or at 700°C from 2 h as a result of which MgTiO, crystallizes. The final product, was characterized by X-ray diffraction analysis. The stoihiometrically calculated qualities of Li₂CO₂, La₂O₃, Cr₂O₃, Ta₂O₅ with frequency 99-99,5 % were introduced to the so MgTiO₃ thus obtained. The materials Mg₁ $(Li_0 La_0)$ TiO, were obtained where x = 0.05, 0.10, 0.15, $0.20 \,\text{mol}$ and MgTi_{1.x}(Cr_{0.5}Ta_{0.5})_xO₃ + $0.4 \,\%$ B₂O₃. (x= 0.025, 0.050, 0.075, 0.100 mol). The addition of small quantities of B₂O₃ is aimed at reducing the calcination temperature, and the substations (Li_{0.5}La_{0.5})²⁺ and (Cr_{0.5}Ta_{0.5})⁴⁺ at improving the temperature stability. A temperature compensation is achieved in references [11, 12] by the substitution of Ba²⁺ with Sr²⁺ and Ca²⁺, and Ti⁴⁺ with Zr⁴⁺.

Grinding and homogenization of raw materials was performed in a planetary ball mill for 35 minutes in a water environment. The presintering was performed at T = 1000°C for 2 h 0.4 % B₂O₃ were added to the MgTi_{1-x}(Cr_{0.5}Ta_{0.5})_xO₃ system. A subsequent grinding was performed in the same mill for 55 minutes. The powders were pressed at P = 200 MPa. 10 % polyvinyl alcohol was used as a plastificator. As a result, tablets with diameter of 10 mm and height 3 mm were obtained for the Mg_{1-x}(Li_{0.5}La_{0.5})xTiO₃ material. They were calcinated at 1250, 1300 and 1350°C in an air environment. While the tablets for the $MgTi_{1-x}(Cr_{0.5}Ta_{0.5})_xO_3 + 0.4 \% B_2O_3$ system have a diameter of 10 mm and height 9 - 10 mm calcinated at 1300, 1350 and 1400°C. The heating continued 3 h as a half an hour break was made at 350 and 400°C in order to obtain a gradual evaporation of the plasticizer. In order to avoid the partial reduction of Ti⁴⁺ to Ti3+ which would cause weakening of the permittivity as a result of the electron exchange [13], the thermal processing was performed in an oxygen environment.

The microwave parameters were measured by the resonance method [14] in a test structure using a sweep generator and a scalar network analyzer manufactured by Hewlett-Packard within the range 8 - 10 GHz. An X-ray diffraction study was carried out with a TUR-M62 diffractometer of the manufacturer Zei β (Jena) using the CuK $_{\alpha}$ radiation. Due to the low concentration

of substitutions just one phase was registered – the phase of MgTiO, without patterns displacements.

RESULTS AND DISCUSSION

The dependences of the permittivity (ϵ_r) on the composition of systems (x) and the calcination temperatures are shown on Figs. 1 and 2. It is evident from the figures that ϵ_r is strongly dependent on the composition of materials and considerably less dependent on the studied calcination temperatures. For the $Mg_{1-x}(Li_{0.5}La_{0.5})_xTiO_3$ system (Fig.1) ϵ_r increases with increasing the concentration of substitution ($Li_{0.5}La_{0.5}$)⁺², while for the $MgTi_{1-x}(Cr_{0.5}Ta_{0.5})_xO_3 + 0.4$ % B_2O_3 (Fig. 2) system the opposite case was observed. These dependencies were registered at all calcination temperatures.

The $d_{\text{exp}}/d_{\text{theor}}$ density relation is shown in % on Figs. 3 and 4 as a function of the composition of systems and the

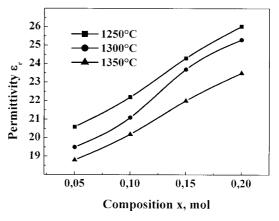


Fig. 1. Dependence of the permittivity on the composition and the calcination temperature for the $Mg_{1-x}(Li_{0.5}La_{0.5})xTiO_3$ material.

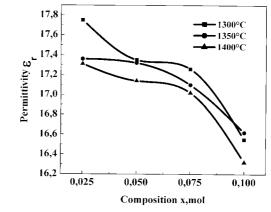


Fig. 2. Dependence of the permittivity on the composition and the calcination temperature for the $MgTi_{1-x}(Cr_{0.5}Ta_{0.5})_xO_3+0.4$ % B_sO_3 material.

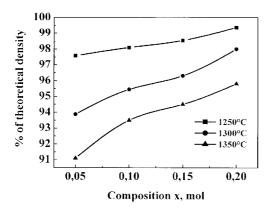


Fig. 3. $d_{exp.}/d_{teor.}$ Ratio in % as function on the composition and the calcination temperature for the $Mg_{1-x}(Li_{0.5}La_{0.5})xTiO_3$

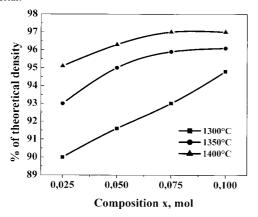


Fig. 4. $d_{exp}/d_{teor.}$ ratio in % as function on the composition and the calcination temperature for the $MgTi_{1-x}(Cr_{0.5}Ta_{0.5})_xO_3+0.4$ % material.

calcination temperature. It is evident from the figures that the density of both materials increases with increasing the concentration of substitutions. For the $Mg_{_{1x}}(Li_{_{0.5}}La_{_{0.5}})_xTiO_3$ system (Fig. 3) d reduces as calcination temperature increases. $d_{_{max}}=99.4$ % is obtained at $T_{_{cal.}}=1250$ °C. Probably at high temperature calcination partial evaporation of Li^+ appear because at $T_{_{cal.}}=1350$ °C d = 95.5 %.

For the $MgTi_{1-x}(Cr_{0.5}Ta_{0.5})_xO_3$ system $+~0.4~\%~B_2O_3$ it is assumed that B_2O_3 improves calcination and d increases with the increase of the calcination temperature (Fig. 4).

The dependences of Qxf (Q = 1/tan δ) on the composition of systems and the calcination temperatures are shown on Figs. 5 and 6. It is known that the losses depend on the materials permittivity and density. In both systems Q weakens as the concentration of substitution increases. It could be assumed that in this case $(\text{Li}_{0.5}\text{La}_{0.5})^{+2}$ and $(\text{Cr}_{0.5}\text{Ta}_{0.5})^{4+}$ increase the permittivity of ceramic materials. It is evident, from Fig. 6, that Q

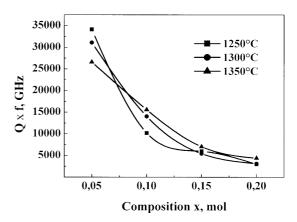


Fig. 5. Dependence of the Qxf on the composition and the calcination temperature for the $Mg_{1x}(Li_{0x}La_{0x})_xTiO_x$ material.

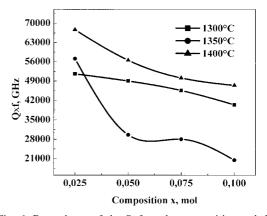


Fig. 6. Dependence of the Qxf on the composition and the calcination temperature for the $MgTi_{1-x}(Cr_{0.5}Ta_{0.5})_xO_3+0.4$ % B_2O_3 material.

increases with the increase of calcination temperature, respectively with the increase of density, while this dependence for the $Mg_{1-x}(Li_{0.5}La_{0.5})_xTiO_3$ system (Fig. 5) is not clearly displayed.

The temperature coefficient of frequency (τ_f) is shown on Figs. 7 and 8 as a function of the composition and calcination temperature. It is evident from the figures that τ_f depends mainly in the composition as for the MgTi_{1-x}(Cr_{0.5}Ta_{0.5})_xO₃ system + 0.4 % B₂O₃ (Fig. 7) it also depends to some extent on the calcination temperature. By increasing the concentration of substitutions the temperature stability of resonators is improved. For the Mg_{1-x}(Li_{0.5}La_{0.5})_xTiO₃ system the τ_f values vary from -13.25 to + 3.05 ppm °C⁻¹ as with x = 0.18 mol (Li_{0.5}La_{0.5})²⁺ τ_f = 0 ppm°C⁻¹ for all calcination temperatures. It is evident, from Fig. 8, that the substitution (Cr_{0.5}Ta_{0.5})⁴⁺ results in τ_f reduction to appropriate values τ_f = -11,3 ppm °C⁻¹ with x = 0.10 mol, which is also one

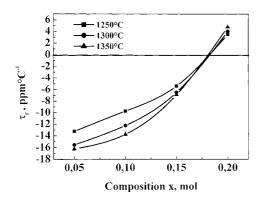


Fig. 7. Dependence of the temperature coefficient of the resonance frequency on the composition and the calcination temperature for the $Mg_{1,x}(Li_{0,s}La_{0,s})_xTiO_3$ material.

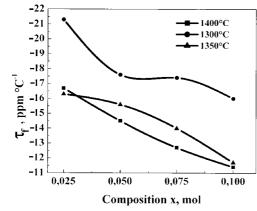


Fig. 8. Dependence of the temperature coefficient of the resonance frequency on the composition and the calcination temperature for the ${\rm MgTi}_{1,x}({\rm Cr}_{0,5}{\rm Ta}_{0,5})_x{\rm O}_3 + 0.4~\%~{\rm B}_2{\rm O}_3$ material.

of the basic aims of this study since it is known that the temperature coefficient of frequency of MgTiO₃ is τ_f = -45 ppm °C⁻¹ [1].

CONCLUSIONS

A low-temperature microwave ceramics with the following composition were synthesized: $Mg_{1-x}(Li_{0.5}La_{0.5})_xTiO_3$ and $MgTi_{1-x}(Cr_{0.5}Ta_{0.5})_xO_3 + 0.4 \% B_2O_3$. The optimum conditions of obtaining were determined.

The most important microwave properties were studied, such as: dielectric permittivity, quality factor, temperature coefficient of frequency, density at T_{cal} =1250, 1300, 1350, 1400°C and frequency 8 – 10 GHz.

The effect of substitutions of Mg $^{2+}$ with (Li $_{0.5}$ La $_{0.5}$) $^{2+}$ and Ti $^{4+}$ with (Cr $_{0.5}$ Ta $_{0.5}$) $^{4+}$ in MgTiO $_3$ was studied.

By increasing the concentration of $(Li_{0.5}La_{0.5})^{2+}$ the materials density and permittivity also increase ($\varepsilon_r = 26$, $T_{cal} = 1250$ °C), the quality factor reduces, and the

temperature stability of resonators is improved ($\tau_{\rm f}$ = 0 ppm °C⁻¹ with x= 0.18 mol for T_{cal.} = 1250- 1350°C.).

The substitution of Ti⁴⁺ for $(Cr_{0.5}Ta_{0.5})^{4+}$ results in reducing the τ _f and temperature compensation of material as with x= 0.10 mol τ _f = -11.3 ppm °C⁻¹, Q =5000.

REFERENCES

- 1. Duck-Hwan Kim, Sang-Kyu Lim, Chul An, Jun-Chul Kim, J. Mater. Sci: Mater. Electronics, **10**, 1999, 673-676.
- D.H. Kim, J.S. Ha, J.C. Kim, C. An, in Proceedings 2 of the Electroceramics, V International Conference on Electronic Ceramics & Applications, Aveiro, Sep. 1996, edited by Baptista (TIPAVE, Aveiro, 1996) p. 93.
- 3. V. Ferreira, F. Azough, R. Freer, J. Baptista, J. Mater. Res., **12**, 1997, 3293-3299.
- 4. V. Ferreira, J. Baptista, J. Petzelt, G. Komandin, V. Voitsekhovskii, J. Mater. Res., 10, 9, 1995, 2301-2305
- 5. Sreedhar, K., N. Pavaskar, Mater. Lett., **53**, 2002, 452-455.
- V. Parvanova, V. Vassilev, International Scientific conference Unitech'05, 24-25 November, 2005, Gabrovo, I 400-I 403.
- 7. H. Jantunen, R. Rautioaho, A. Uusimaki, S. Leppavuori, J. Am. Ceram. Soc., **83**,11, 2000, 2855-2857.
- V. Parvanova, V. Vassilev, V. Levcheva, Annual Scientific Session with International Participation, Technical University of Varna, 7-9 October 2004, Annual Proceedings Tech. Univ. Varna, 4, 2004, 139-144.
- 9. R. Kell, A. Greenham, G. Olds, J. Am. Ceram. Soc., **56**, 7, 1973, 352-354.
- V. Parvanova, M. Maneva, Thermochim. Acta, 279, 1996, 137-141.
- M. Nadoliisky, V. Vasilev, Annual Scientific Session with International Participation, Technical University of Varna, 7-9 October 2004, Annual Proceedings Tech. Univ. Varna, 4, 2004, 145-148.
- 12.V. Vassilev, Annual Scientific Session with International Participation, Technical University of Varna, 7-9 October 2004, Annual Proceedings Tech. Univ. Varna, 4, 2004, 170-174.
- 13. J. Poplavko, Fizika dielektrikov. Vissha skola, Kiev, 1980, p. 128, (in Russian).
- 14. W. E. Courthney, IEEE Trans. Microwave Theory Tech., **MTT-18**, 1970, 476-485.