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ABSTRACT

A fuzzy network model is presented for accurate prediction of the solubility of H,S in pure water and aqueous brine

solutions over wide ranges of operating conditions. The fuzzy C-means clustering method is used to determine the rule

antecedents and the Levenberg-Marquardt method is implemented to calculate the optimal premise parameters. Predictions

of the proposed fuzzy model are much more accurate than those obtained through the available thermodynamic models.

The presented fuzzy model can be used for accurate design of new water-wash gas sweetening units at the upstream of

amine sweetening plants in oil and gas industries.
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INTRODUCTION

At the present, amine solvents are widely used for
removing carbon dioxide (CO,) and hydrogen sulfide (H,S)
from sour natural gases and refinery gaseous streams.
Because of higher H,S content of new exploited reservoirs,
it is necessary to optimize the gas sweetening processes to
avoid solvent and energy losses. Thus, establishing a sour
gas water wash unit using filtered water or aqueous brine
solution at the upstream of an amine sweetening unit has
been recently found economic justification. The sour gas
water wash reduces the H,S loading, lowers the particulate
concentration and allow us to carry out the amine
sweetening operations in medium scale units. Therefore
accurate prediction of H,S solubility in pure water and
brine solutions are necessary for proper design of sour gas
water wash sweetening units.

The most extensive studies of H,S solubility in
aqueous brine solutions (such as NaCl and KCl) are those
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of Drummond [1], Barrett et al. [2], Suleimenov and
Krupp [3], and Xia et al. [4]. Different thermodynamic
models have also been presented for correlating the ex-
perimental H2S solubility data. However it is not pos-
sible to obtain accurate predictions over wide ranges of
salt concentrations. Also a considerable computational
time is required to determine the model parameters.
For example, Carroll and Mather [5] have used Peng-
Robinson EOS modified by Vera [5] to predict the solu-
bility of H,S in pure water. This model underestimates
H,S solubility at low pressure (P < 10 bar) and overes-
timates HS solubility at high temperatures (T > 450
K). Barta and Bradley [6] developed a semi-empirical
model to predict H,S solubility in aqueous NaCl solu-
tion from the Pitzer interaction model. Suleimenov and
Krupp [3] have measured H,S solubility in aqueous NaCl
solution up to 593 K and 2.5 M NaCl at 1 atm, but
their model can not be used for accurate prediction of
H,S solubilities. Other approaches, i.e. PHREEQC [7]
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and SUPCRT92 [8] codes, based on numerical specia-
tion-solubility modeling and thermodynamic equilib-
rium also proposed for calculating H,S solubility in H,S
saturated brines and NaCl solutions, respectively.

Duan et al. [9] have developed the most rigorous
and most accurate thermodynamic model for prediction
of H,S solubilities in pure water and brines and even in
more complex brines such as seawater. However there
are significant prediction errors at some ranges of salt
concentrations due to several simplifying assumptions
made in the model development.

Because of the aforementioned shortcomings in
existing thermodynamic models, an artificial fuzzy logic
model has been alternatively presented in this work. Fuzzy
system is a computation framework based on the concepts
of fuzzy sets, fuzzy if-then rules, and fuzzy reasoning.
Moreover, the powerful function approximation
properties of neural networks [10-15] make them useful
for representing nonlinear models. Wang et al. [16]
reported the combination of multiobjective hierarchical
genetic algorithm and recursive least square method to
obtain interpretable Takagi-Sugeno fuzzy models [17] of
high accuracy.

The aim of the present work is to develop an integrated
fuzzy clustering-fuzzy model for predicting H,S solubility
in pure water and aqueous NaCl brine solutions. For the H,S-
H,O system, the solubility data from different sources [4,5,18]
have been employed. The experimental data for the H,S -
Nacl-H,O system are those reported by Drummond [1], Barrett
et al. [2] and the data of Suleimenov and Krupp [3], which
have been used in the present work. The proposed fuzzy
model predictions are also compared with those of Duan et
al. [9] thermodynamic model and experimental data.

PROPOSED ANFISMODEL

The proposed neuro-fuzzy model in ANFIS is a
multilayer neural network-based fuzzy system as shown
in Fig. 1. Assuming that the ANFIS has two inputs x,and x,
and one output, the following rules can be written for a
first order Sugeno fuzzy model [17]:

Rulel:
If x, isA and x,isB,,then f, = p,x, +q,X, +1; M

Rule2:
If X, isA, and x, isB,,then f, = p,X, +Q,X, +T, )

The proposed ANFIS structure as shown in Fig
1 is described as follows:

Layer 1. This is the input layer where the input
nodes, x, and x, enter the Fuzzy network

Layer 2. The fuzzy part of ANFIS is mathematically
incorporated in the form of membership functions (MFs).
A membership function £, (X) canbe any continuous
and piecewise differentiable function that transforms the
input value x into a membership degree, that is to say a
value between 0 and 1 [18, 19]. The layer 2 is the
fuzzification layer in which each node represents a
membership according to the following three parameter
Gaussian function:

X—C \2\b
1 (%) = exp[-((——)*)"] 3)
a
Every node iin this layer is an adaptive node with
anode function
O, =uy(X) fori=12 or “)
O,; = Ug_,(X) for i =34 &)

Where x, (or x,) is the input node iand A, (or B ,) is a
linguistic lable associated with this node. Therefore O, ;is
the membership grade of a fuzzy set (A, A,, B,, B,).

As the values of the parameters {a,b,c}change,
the bell-shaped functions vary acccordingly, exhibiting
various forms of membership functions on linguistic label
A. Parameters in this layer are referred to as premise
parameters.

Layer 3. Every node in this layer is a fixed node
labeled as IT, whose output is the product of all the
incoming signals:

Oy =W = 1, (%) fg (%) 1=12 (6)

Every node in this layer computes the multiplication
of the input values and gives the product as the output
[19]. The membership values represented by U 4; (Xl) and
Ug (X,) are multiplied in order to find the firing strength
of a rule where the variables x, and x, have the linguistic
values A and B, respectively.

Layer 4. This layer is the normalization layer which

normalizes the strength of all rules according to Eq. (7):
W

O . =W=—"'"
4,i [ W, + W, @)
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where w. is the firing strength of the ith rule which is
computed in layer 3. Node i of this layer labeled as N
computes the ratio of the ith rule’s firing strength to the
sum of all rules’ firing strengths. For convenience, outputs
of this layer are called normalized firing strengths [20].
Layer 5. Every node in this layer, labled as an
integer value, is an adaptive node with a node function
[21]:
O, =W f, =W (pX +0X,+1)

i (®)
where W is the normalized firing strength from layer 4
and {p, g, r} is the parameter set for this node. Parameters
in this layer are referred to as consequent parameters

Layer 6. The single node in this layer is a fixed
node labeled as z which computes the overall output
as the summation of all incoming signals:

2w,

—_ YV _ |
OG,| Iz VVI f| z VV, (9)
|

The ANFIS can be trained by a hybrid learning
algorithm to identify the membership function parameters
[22]. In the forward pass the algorithm uses least squares
method to identify the consequent parameters {p, g, r}
on the layer 5. In the backward pass the errors are
propagated backward and premise parameters {a, b, ¢}
are updated by gradient descent.

Layer1

Layer 2

RESULTSAND DISCUSSION

A first order Takagi-Sugeno fuzzy model has been
developed for prediction of H,S solubilities as a function
of temperature, pressure, and salt compositions.
Solubilities of H,S in pure water and in 1, 2, 4, 6 M NaCl
solutions have been reported with pressure range of 0-
200 bar and temperature range of 273 K to 513 K. There
are 569 data points of which 398 data points are used for
fuzzy model training and 171 data points are used to test
the generalization capability of the trained network. The
molal concentration, system pressure, and temperature are
used as inputs while the output of the fuzzy model is the
H_S solubility in the liquid phase.

Proposed Fuzzy model predictions regarding H,S
solubility in pure water are compared with those predicted
by Duan et al. [9] and experimental data as shown in Fig.2.
There are some deviations in predicting the solubilities of
H,S, when the thermodynamic model of Duan et al. [9] is
used as shown in this figure. At T=393.2 K, the model of
Duan underestimates H,S solubility at pressures above 60
bar, while, at T=453.2 K, Duan model overpredicts the
H_S solubilities at pressures above 40 bar. As shown in
Fig. 2, the presented fuzzy model gives accurate predic-
tions over the wide ranges of pressures and tempera-
tures.

The solubility of H,S is generally increased as the
system pressure increases, while an increase in

Layer 3 Layer 4 i ¢ Layer 5  Layeré
(B

Im N2 2

13 N3 E

14 N4 » 4

Fig. 1. ANFIS structure for atwo input Takagi-Sugeno model with four rules.
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Fig. 2. H_S solubilities in pure water at 393.2 and 453.2 K
(Prediction of fuzzy model vs. experimental dataand Duan
modd).
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Fig. 3. H,Ssolubility in purewater at 453.2 K (Prediction of
fuzzy model vs. experimental data).

temperature leads to a decrease in H,S solubility as
shown in Figs. 2 and 3. Solubility of a gas in typical
solvents usually falls with rising temperature. However,
at higher temperatures, approaching the critical tem-
perature of the solvent, the solubility of a gas usually
rises with temperature [23], as illustrated in Fig.4. As
shown in this Figure, the trend of solubility data at dif-
ferent operating conditions are well predicted by the
proposed Fuzzy model. According to the Table 1, the
fuzzy model can represent the experimental solubility
data at different NaCl concentrations accurately with
the mean AAD% (average absolute deviation percent)
of about 2.43% according to the following equation:

Exp. at 453.15 K
51 --—--Exp.at393.15K
....... Fuzzy model

H,S Solubility (mol/
w

20 40 60 100 140 180

Pressure (bar)

Fig. 4. Comparison between H,S solubility in pure water at
393.15and453.2K.

H2S Solubility (mol/kg)

101 151 201 251 301 351

Data index

Fig. 5. Training performance of the proposed fuzzy model.

N mexp ) — mpred .
AAD (%) =%;‘( Hz?r)h;j‘é)_ ) (10)

where N is the number of data points and (m ﬁ(zps) and

mﬂjg are the experimental and predicted H,S solubility
respectively. It should be noted that the Duan
thermodynamic model prediction accuracy deteriorates
at high pressures and temperatures (T>500 K and P>100
bar) such that the AAD% between Duan model predictions
and experimental data is as high as about 7%. Fuzzy model
training performance is shown in Fig. 5. The trained Fuzzy
model is validated by the testing data set. Fig. 6 represents
the validation results of the proposed fuzzy network model,
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Fig. 6. Testing performance of the proposed fuzzy model.
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Fig. 7. H,S solubility in 6M NaCl solution at 513.15 K
(Proposed fuzzy model Predictionsvs. experimental data).

from which it can be observed that the testing errors for
all the testing data set are nearly zero. This clearly indi-
cates the effectiveness and the reliability of the pro-
posed model for H,S solubility predictions.

Fig. 7 represents the comparison between the
experimental data and the result of fuzzy model for 6M
NaCl brine solution at 513.15 K. As shown, the proposed
fuzzy model can reproduce the experimental data at high
temperatures very accurately.

Proposed fuzzy model solubility predictions are
compared with those of Duan model and experimental
data regarding 4M and 6 M NaCl aqueous solutions at
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Fig. 8. H,S solubility in 4M NaCl solution at 333.15 and
393.15 K (Comparison between Fuzzy modd and Duan
model).
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Fig. 9. H,S solubility in 6M NaCl solution at 333.15 and
393.15K (Comparison between Fuzzy model and Duanmodd).

two different temperatures of 333.15 and 393.15 K in
Figs. 8 and 9, respectively. As shown in these Figures
the proposed Fuzzy Network Model solubility predic-
tions are in excellent agreement with experimental
data, while there are significant deviations between
Duan thermodynamic model predictions and measured
data especially at higher pressures. As shown in Fig
10, the proposed Fuzzy model predictions are in ex-
cellent agreement with all measured values over wide
ranges of operating variables such that the presented
Fuzzy model outperforms the available thermodynamic
models.
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Fig. 10. Comparison of the proposed Fuzzy model predictions
with al measured H,S solubilities in agueous solutions.

Table 1. Deviations between proposed fuzzy model
predictions and experimental data.

System AAD(%)
Pure water 2.4
1M Nad 1.69
2M Nad 1.81
4M Nad 2.83
CONCLUSIONS

H,S solubilities in pure water and aqueous brine
solutions are determined by using a fuzzy network model.
Optimal fuzzy model is obtained according to fuzzy
clustering followed by Levenberg-Marquardt algo-
rithm. The genetic algorithm is used to initialize the
consequent parameters of the rules. The mean least
square method is then implemented to obtain the
optimal sequence of consequent parameters. The
suggested fuzzy network is tested against the
independent set of brine concentrations not used during
the network training. Predictions of the proposed fuzzy
model are much more accurate than those obtained
through the available thermodynamic models. The
presented fuzzy model can be used for accurate design
of water wash gas sweetening units at the upstream of
amine sweetening plants in oil and gas industries.
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