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ABSTRACT

A feedforward artificial neural network (FFANN) model is proposed for accurate prediction of acid gas absorption

capacity of piperazine solvent employed in oil and gas industries. The network has been trained, validated and tested by

using 70%, 15% and 15% of all measured equilibrium H_S solubility datapoints respectively. A network with one hidden

layer comprising seven nodes is found to be accurate enough for plant design. The Levenberg—Marquardt back propagation

training algorithm is used to train the network while tansigmoid transfer function and a linear transfer function are applied

to the hidden and output layers, respectively. The overall average absolute deviation percent (AAD%), mean square
error(MSE) and correlation coefficient (R*-value) of predicted results are about 1.38 %, 4.6X10% and 0.9941 respectively.
The presented FFANN model can be utilized for accurate prediction of H,S removal efficiency of piperazine solvent in

sour gas sweetening plants.
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INTRODUCTION

Sour gas sweetening is often achieved by
absorption of acid gases in aqueous solution of amines.
The basic design of such absorption processes requires
an accurate model for the solubility of sour gases, e.g.
carbon dioxide and hydrogen sulfide, in aqueous
solutions of one or more amines, e.g.
methyldiethanolamine (MDEA), piperazine (PIPH,),
monoethanolamine (MEA), diglycolamine (DGA), and
diethanolamine (DEA). Piperazine (PIPH,) is a new
activator which is used in combination with selective
amine solvents such as MDEA to increase the removal
capacity of H,S and CO,. In this work, the H,S absorption
capacity of aqueous piperazine solvent in gas sweetening
plants is studied. The ability of a solvent to remove
hydrogen sulfide is dictated by its equilibrium solubility

as well as mass transfer and chemical kinetics
characteristics.

The equilibrium solubility of hydrogen sulfide
in aqueous piperazine solvent as well as the kinetic of
absorption has been experimentally studied [1]. The
equilibrium solubility of hydrogen sulfide in aqueous
MDEA and piperazine solutions has also been
experimentally investigated [1-5]. Because of the
inherent complexity of such systems, thermodynamic
models such as electrolyte solution models are often
failed to describe the phase equilibrium of strong
electrolyte systems especially at high temperatures and
pressures. Xia et al. [1] have used a GF model to calculate
the activity coefficients of both molecular and ionic
species of aqueous electrolyte solution of mixed
components H,O, piperazine, MDEA, and H,S. The
calculation requires the knowledge of the temperature
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dependent chemical equilibrium constants as well as
interaction parameters. However, the predicted results
are not accurate enough for design purposes. Bishnoi et
al. [6] studied the absorption of carbon dioxide into
aqueous solutions of piperazine and corresponding
absorption rate was measured from mass transfer and
chemical equilibrium reaction data.

Although thermodynamic models can be
implemented for modeling the phase equilibria of the
electrolyte system, these models may give inaccurate
predictions at high solvent concentrations. There are
also strong deviations between predicted and measured
values at different temperature and pressures. In order
to overcome these difficulties, the artificial neural
network approach has been employed in this work.

MODEL DEVELOPMENT

In this work a feedforward neural network
(FFNN) [7-11] has been developed for prediction of
H,S removal capacity of piperazine solvent in oil and
gas industries. Each layer of the proposed network except
input layer, receive an input from each neuron in the
previous layer and deliver an output to the neurons in
the next layer after passing its weighted sum inputs plus
a bias value through an activation function according to
the following equations:

n
yJ = fh(aj): fh %Wjixi +bj (1)
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where w, is the weight between the j-th hidden neuron
and the i-th input node in the input layer, x denotes the
i-th input, b/is the bias value of the j-th hidden node, n
is the number of hidden neurons, frepresents the hidden
layer transfer function, and Y, is the output of the j-th
hidden neuron. In this work the hyperbolic tangent
sigmoid activation function is used for the hidden layer
which can be written in the following form:
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For the output layer, a linear transfer function is
used:
folax)=ay 3)
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where a, is the output from the k-th output node
and f, denotes the transfer function of the output layer.
The backpropagation algorithm is employed for network
training. It uses the error between the real network
output and the target values to adjust the weight and
bias of the layers. The error function can be expressed
as:

E=,i|_§(0i —ti)z @)
i=1

where N is the number of elements in the output vector,
O, is the i-th element of the network output and ¢,
represents the according target value. The
backpropagation algorithm minimizes the error function
so that the weight and bias values can be updated using
an updating rule. Consequently, a gradient of the error
is considered, where,
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Now, by the steepest gradient the weight
adjustment can be written as

W&}” 1 WLP + Aw{q'-1 (6)

where m is the iteration number, w,; denoting the weight
between the k-th neuron in the output layer and neuron
j in the hidden layer, Aij can be defined by the
steepest descent procedure:

(7
oE
where 1] is the learning rate and j,, ~ separately
defined for hidden and output layers:
oE

aij:_‘kaj(p_l) (®)

And by egs.7 and 8:
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where j denoting the j-th input to neuron k of the output
layer (p), and @) can be written as:

O = Vi @= yi Xt — vi) (10)
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y, is the output of the k-th neuron in the output layer.
Therefore, the derivation of the setting of output layer
weights can be completed as follow:

Awy; (p)=n¢y (p)y;(p-1) (11)

Accordingly, for the j-th neuron of the hidden
layer, @ j (p - 1) term can be rewritten as:

¢ (p-1)=y;(p-2fi-y; (p—l))%%(p)""kj (P) (1)

And from Eq. (7), weight adjustment of the hidden layer
can be expressed as

Aw;i(p-1)=n¢;(p-1)y; (p-2) (13)

In this work, Levenberg—Marquardt back
propagation algorithm is used for network training.

RESULTSAND DISCUSSION

The most influencing parameters such as
temperature, pressure and piperazine concentration are
defined as input variables of the proposed neural
network. The equilibrium H_S sour gas solubility in the
aqueous solution of piperazine is the network output.
Network has been trained, tested and validated by using
70%, 15% and 15% of all measured equilibrium H,S
solubility data respectively. A feedforward neural
network with seven neuron in one hidden layer is found
to be the most accurate structure as shown in Fig 1. The
prediction performance regarding the training data is
shown in Fig 2. According to this figure, it is evident
that the prediction error between the experimental and
predicted network output is very low. The accuracy of
the trained network has been examined by testing and
validation calculations as shown in Figs. 3 and 4
respectively. The correlation coefficient (R2-value) for
training, validation and testing calculations are 0.9933,
0.9982 and 0.9942 respectively, suggesting that the
proposed network is well trained and validated. The MSE
value of the network for the training, validation, and
testing data are about 5X10+, 2.7X10#, and 4.7X10%,
respectively. The optimum calculated values of network
parameters to be used in simulations are given in Table 1.
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Fig. 2. Comparison of the proposed neural network model
predictions with the experimental H,S solubility data
(training).
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Fig. 3. Comparison of the proposed neural network model
predictions with the experimental H_S solubility data
(testing).
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Fig. 4. Comparison of the proposed neural network model
predictions with the experimental H,S solubility data
(validation).
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Fig. 5. Comparison of the proposed neural network model
predictions with experimental H,S solubility in agueous
piperazine solution (low piperazine concentration).
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Fig. 6. Comparison of the proposed neural network model
predictions with experimental H_S solubility in agueous
piperazine solution (high piperazine concentration).
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Predicted molal solubility of H,S in aqueous
solution of piperazine by using the proposed neural
network model are compared with experimental data at
different pressures, temperatures and piperazine
concentrations in Figs 5 and 6. According to these
figures, the deviations between the ANN predicted H,S
solubilities and experimental results are very low for
the entire range of operating variables.

As shown in Figs. 5 and 6, the solubility of H,S
is very sensitive to the piperazine molality in the
solution such that whenever stoichiometric H,S molality
in the solution is less than that of piperazine, the sour
gas is practically completely dissolves in ionic form, as
hydrogen bisulfide. However when, the stoichiometric
H,S molality surmounts that of the piperazine, H,S
dissolves physically in the solution. Therefore, the liquid
can be regarded as an aqueous mixture of two strong
electrolytes, so that traditional electrolyte models fail
to describe the system as a whole. As shown in Figs 5
and 6, at a fixed temperature, adding H,S to a piperazine-
containing aqueous solution increases total pressure
above the solution. When the stoichiometric molality
of the H,S surmounts that of the base piperazine, the
total pressure increases steeply as the H,S can no longer
be absorbed chemically and the physical absorption
dominates [1]. As H,S is added to the solution, total
pressure increases steeply reach to a plague and remain
nearly constant. This phenomenon is due to the
formation of the second liquid phase in equilibrium
with first liquid phase. The above experimental
observations are well predicted by the proposed neural
network as shown in Figs 5 and 6. It should be noted
that the reaction of H,S with piperazine is a much faster
than the H,S reaction with conventional carbamate-

Table 1. Optimum values of the proposed neural net-

work parameters.
Wi wp wis bf wg) bj
04904 -28018 -0994 31647 -0.075
02451 -22707 22922 -16661 0.706
-0.0038 18577 32794 -0.5520 -0.0725
29065 03507 -14966 05924 -0.2809 00839
0021 00616 -0.7322 -0.9063 -1.0498
23719 -10802 27844 09187  0.0203
05151 -30105 -02864 29313 0.0572
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Fig. 7. Comparison of the proposed neural network model
predictionswith all experimental H,S solubility data.

Table 2. Overall deviations between predicted and
experimental H.,S solubilities in piperazine solution.

Error m_H,S (mol/kg)
AAD% 1.38
MSE 46x107
R
0.9941

forming amines such as MEA, DGA, or DEA. The
behavior of the system H,S + piperazine + H,O is very
similar to that observed for the system H,S + MDEA +
H,O [1, 12].

Fig 7 shows the comparison of the proposed
neural network model predictions with all experimental
H.S solubility data with correlation coefficient of
R?=0.9941. Deviations between predicted and
experimental data are given in Table 2. The overall
AAD%, MSE and R?-values are about 1.38 %, 4.6X10"
4 and 0.9941 respectively. As shown in Fig 7, the
presented neural network model can be used for accurate
prediction of the equilibrium H.S solubility in aqueous
solution of piperazine over wide ranges of temperature,
pressure, and solvent concentrations.

CONCLUSONS

A feedforward artificial neural network (FFANN)
with one hidden layer comprising of seven nodes has
been proposed for accurate prediction of H,S solubility
in aqueous piperazine solvents. The overall average
absolute deviation percent (AAD%), mean square
error(MSE) and correlation coefficient (R?-value) of

predicted results are about 1.38 %, 4.6X10* and 0.9941
respectively. It is found that the proposed neural network
prediction results are much more accurate than those
obtained by using the available thermodynamic models.
The presented FFANN model can be utilized for
accurate prediction of H,S removal efficiency of
piperazine solvents in oil and gas industries.

NOMENCLATURE

f transfer function
w, weight value between i-th input and j-th neuron of
the input and hidden layers

w,  weightvalue between j-th hidden neuron and the
k-th neuron of the output layer

b bias value of the j-th neuron

AAD% average absolute deviation percent

MSE mean squared error

E error function

Y, net output from j-th neuron

m iteration number

n hidden nodes number

N number of elements in the input-output vectors

m_H.S molal solubility of H,S (mol/kg of water)

k index of k-th neuron in the output layer

o) overall network output for the i-th element
t target values of the i-th element

a, output from j-th neuron

T absolute temperature

R correlation coefficient

X, i-th input to the network Greeks

n learning rate

D error term back-propagated from the j-th node
Subscript

h hidden layer

o output layer Superscript

Exp experimental value
Pred predicted value
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