Journal of the University of Chemical Technology and Metallurgy, 47, 5, 2012, 565-569

AN ALGORITHM FOR SYNTHESISOF PROCESS-ORIENTED SOFTWARE
AND ITS DISTRIBUTION ON SINGLE AND MULTIPROCESSOR SYSTEMS

A. Atanassov

Received 27 July 2012
Accepted 12 October 2012

University of Chemical Technology and Metallurgy
8 Kliment Ohridsky, 1756 Sofia, Bulgaria
E-mail: naso@uctm.edu

ABSTRACT

The algorithm given in the paper is based on the theory of Communicating Sequential Processes /CSP/ and on the
experience of the author in the development of real-time software systems and applications. The CSP theory presents the
software or hardware systems as a number of communicating processes, exchanging messages or events via channels.
Right grouping and mapping of the CSP processes to the software processes and threads, and their allocation on the
microprocessors will dramatically increase the performance of the whole system. The paper presents a CSP process-
oriented approach to system decomposition and main algorithm steps for processes’ and threads grouping or splitting in

order to meet the time constraints defined for the system.

Keywords: CSP theory, process oriented software, operating systems processes & threads.

INTRODUCTION

The theory of Communicating Sequential Processes
/CSP/, developed by A.S. Hoare [1] is a mathematical
formalism - the process algebra describing the behavior
and interactions between components of a wide range of
systems. The basis of the theory are the processes
exchanging sequences of messages (events) via input and
output channels.

The process is a component, encapsulating some
data structures and algorithms that are inaccessible to
other processes. They are private in the terms of object-
oriented programming /OOP /. Each process executes its
own algorithm in one or more threads, scheduled by the
operating system /OS/. In control systems the process
can be related to the controlled object, to the controller
or to various filters, adders, nonlinear elements, etc.

From a more abstract point of view the process can
be regarded as the finite machine, driven by events (or
data) received from other processes via input channels.

Each process has an alphabet (interface), de-
scribed by many events in which the process may be
involved or is able to interpret. If the process P can

interpret events a, b, ¢ and d, then the alphabet aP is
written as:

oP = {a,b,c,d}

At a certain point of time the process is able to
interpret some of the events of the alphabet, or to reject
the interpretation of some of them. An event represents an
action that can be enforced by a process (a specific step of
the algorithm or process change from one state to another).

An event can be combined with a process using the
prefix operator (->). Process bang -> UNIVERSE first
interprets the event bang and then behaves like UNIVERSE.
This new process can be given the name CREATION.

CREATION= bang-> UNIVERSE

Alternative participation of a process in several
sequences of events can be described
as: P=a->b->c->STOP | d-> STOP,
or P= P(a)-> P(b) -> P(c) ->STOP| P(d) ->STOP,
where the sign | is an operator to choose between se-
quences, a P (x) e R participation process in the event x.

In compositional relation the processes can be
combined:

- Sequentially (operation - ;)
CAR= Start ; Drive ; Finish

Journal of the University of Chemical Technology and Metallurgy, 47, 5, 2012

- In parallel (operation ||)

AR () = ||y @A)
<«
- In parallel with priority (operation ”).

The latter is analogous to parallel as described
above, but the process standing on the left of operator is
implemented with a higher priority than standing on the
right. This statement makes sense in a real-time computer
system where the processes with higher priority are
implemented as an OS process or a thread running with
higher priority.

Processes communicate via channels through which
it must be possible to structure events. Channels are
characterized by name, data type and direction. Channels
are always unidirectional (point-to-point) and are either
input or output from one process to another.

An output channel of the process (P) can be pre-
sented as:
clx >P, xeT

An input cannel of the process (Q)) can be presented
as:
¢ ?7xT -> Q(x),

where cisthe name of the channel, Tis the channel
type, and x is a variable (event) from type T. The sign !
indicates the output of data, with the sign? - data entry.

Very often when describing the CSP processes
the CSP and charts are used, as given in the example
below, or process diagrams of the type:

Process(in, out) = in -> out -> Process(in, out),
where in, out can be channels or a subset of events related
to the process or data of a certain programming language.

The following example provided by Hilderink [2]
illustrates the application of the theory of CSP in the design
of controllers for a given unit. Fig. 1 below presents a
summary chart of a CSP-control system (System), con-

X
Controller Plant

y

v

System = Controller | {x,y}l Plant

Fig. 1. CSP-chart of a system including a controller and a
unit (plant).

566

S c X
A a b B c
T —-
[l
d e y
D E
[l -—

Fig. 2. CSPchart of the Controller.

sisting of a working in parallel controller and an unit
(Controller and Plant):
The structure of the controller is given on Fig. 2.
The processes and the channels describing the
controller can be presented compositionally as follows:

A) S(a,b,d) B(b,c)

C(cx) Ey,e) D(e,d)

Given the requirement that the process A must have
the highest priority and be implemented in parallel with
the sequential processes S, B and C, and in parallel with
the sequential processes D and E, the final recording of
the regulator takes the following form:

Controller = A(a) <||_ ((Ha,b,d) ; B(b,c) ; C(c,
) || (E(y:e) ; D(ed)),

where for example process Bcan be described as:
B=Db?z-> c!f(2 -> B.

Through the process algebra, the CSP complex
systems which surround us, can be described and
presented as compound-component processes that interact
concurrently or are constructed from other sequential or
parallel processes, etc. Using the process oriented
approach, complex processes can be decomposed to sub-
processes and their input-output channels to be specified
together with the messages (events) that they communicate.
A CSP-description of a system contributes to its detailed
design, programming and verification of its performance

The refined processes then have to be mapped to
operating system processes and threads.

The last ones are not subjected of the CSP theory.
They are primitives of the OS. The process or the application
or the task are synonyms and are related to an executable
unit (file) which can be managed or scheduled by the OS.

OS Process. The process has priority, ID, its own
stack, data block, handles, etc., and minimum one thread,
which executes the code of the process. The process
runs in its own memory space.

A. Atanassov

OS Threads. The threads are existing inside the
process. They also have ID, priority and other attributes
but not their own memory. They share the process
memory.

Both threads and processes can be scheduled by
the OS. Switching from one process to another (known as
context switch) consumes more processor time than
switching between the threads inside the process.
Different OS use different scheduling algorithms
(schedulers): round-robin, fixed priority, preemptive, non-
preemptive, etc. When CSP processes are mapped to OS
threads and processes, it is very important how to choose
their priority. Assigning wrong priority to a thread or
process will impact the entire system performance. This
is valid also regarding the choice of the OS (Windows,
Linux, Open Embedded, QNX, etc.). Some of them are not
appropriate for real-time systems and can not guarantee
the sampling required from hard real-time applications.

DESCRIPTION OF THEALGORITHM AND ITS STEPS

1. Determination of the overall control process or overall
software system.
2. Decomposition of this process to sub-processes on the
basis of the functional requirements and constraints (time,
hardware, software, etc.). In this case interdisciplinary
knowledge in control systems, parallel programming, OS
and real-time OS is required.
3. Definition and determination of the channels and the
messages exchanged over these channels (alphabet of the
processes).
4. Determination of processes’ priorities (from the control
point of view)
5. Refinement of algorithms of individual processes.
6. Selection of a software programming architecture and
mapping the CSP-processes to OS processes and threads.
7. Distribution of the OS processes over hardware (
processors and/or cores) .

For process allocation the following formula can
be applied:

N
Ttotal =Tos+ Y (Tproc, +Tswitch) < Td

i=1

where:
Ttotal — is a total software execution time;
Tos — is time for OS;

Tproc, - is the execution time of the process i ;
Tswitch, — context switch time for process i;

Td - is sampling time of the control system or critical
time of the software system.

RULESFORMAPPINGANDALLOCATIONOF THE
CSPPROCESSESTO OSTHREADSAND
PROCESSES, AND ON THE PROCESSORS:

e IF Ttotal < Td, THEN the processes can be executed
to one processor or core.

e IF Ttotal > Td, the processes can be executed to N
processors or cores, or to a faster processor
N =Ttotal/Td (N is the bigger integer number)
e [F processes Proc,and Proc; are working with shared
data THEN they can be formed as threads in one OS process.
e IF processes Proc, and Proc, are not working with
shared data THEN they can be formed as separate OS
processes.

The execution time of a certain process Tproc,
includes communication times Tcomm, to other processes
and threads, where j varies from 0 to N-1.

In order to determine the above mentioned times
two programming classes - Statistics and Logger, were
developed. They serve to record the statistics associated
with threads and processes of the developed software
systems. The statistics class register the IDs of OS threads
and processes, their priorities, their names (defined by
the programmer), their time for communication with
external processes, their time to work on common data
and more. The class Logger records statistical information
in log files, allowing recording of events / information
with different priority (up to 8 different levels of
importance). Off-line analysis of the log files information
is used in the decision to map a process on a thread or how
to allocate the processes on the processors or cores.

EXAMPLEOFTHEALGORITHM USAGE

The next example demonstrates how the algo-
rithm can be applied to form process-oriented archi-
tecture of one WEB-based system intended to maintain
and diagnose of letters sorting systems in USPS [3]. The
system is known as Local Performance Diagnostics Server
/LPDS/. A simple view of the system is given on Fig. 3.

It consists of an WEB server, an WEB compo-
nent (WebUI), some diagnostic components for SW and

567

Journal of the University of Chemical Technology and Metallurgy, 47, 5, 2012

\ User

Y

LPDS Server

WEB Server

SWhDiagnostic !HWDlagnostlc ‘ ‘ Statistics ‘ ‘ RTEMsg ‘
J2CIGatewa J2CDB
Pl L A
N N |

‘SysController | ‘ ClController ‘

i T L T DataBase

Fig. 3. Componentsof LPDS.

User

v !

WEB Server
| A

HWDlagnostm] [Stat|5t|cs

LPDS Server

[SWDmgnostlc RTEMSQ J

JZCIGateway J2CDB
'External Processe

Fig. 4. CSP processes after the decomposition.

HW and OS diagnostics (HWDiagnostics and
SWnDiagnostics), statistics and special run-tie error mes-
sages components (Statistics and RTEMsg), as well as
some gateways (J2CIGateway and J2CDB) that trans-
form messages from internal to external components.

After CSP decomposition the LPDS was trans-
formed to the CSP processes —given on Fig. 4. The
point-to-point channels between the processes, shown
with arrows, describe the communication paths. The
names of the cannels describe the ways of messages ex-
change between two components - for example
WebUItoSWDiag or SWDiagtoWebUI, etc. The chan-
nel names are not provided on the figure.

After analysis of customer requirements and the
priorities of the exchanged messages and data between

568

external and internal processes (components) the fol-
lowing composition of the processes in LPDS system
was proposed
LPDS_System = (J2CIGateway || J2CDB) ||
(SWDiagnostics|| HWDiagnostics) ||

(Statistics ||RTEMsg) | WebUI

As can be seen the gateway processes need high-
est priorities, next are the diagnostics processes followed
by statistics and RTE messages processes. The lowest
priority has the WEB UI process.

Each of the gateway processes was mapped to a
single OS process. Other processes were implemented
as threads inside one OS process. The threads are
grouped with 3 levels of priorities: highest for SW and
HD diagnostics, midium for statistics and RTE mes-

A. Atanassov

sages and lowest for WEB UL So, the LPDS system
takes the following form: _

LPDS_System = J2CIGateway || J2CDB || LPDS_Subsysten
where: .
LPDS_Subsystem = (SWDiagnostics || HWDiagnostics) I

(Statistics |[RTEMsg) || WebUI

In the beginning all processes, including the WEB
server one, were allocated on one computer. After oft-line
analysis of log files and the performance of the LPSD system
the decision to move the WEB server to another computer
was taken and all other LPDS processes were left to the
first computer. The decision was based on the overload of
the computer because of highest communications among
the WEB server and up to 60 simultaneously connected
users (browsers), supported by it.

The described above algorithm was used for
refining the software architecture of an Automatic Number
Plate Recognition system /ANPR/ [4, 5] by mapping
efficiently the CSP processes to corresponding OS tasks
and threads. It increased the performance of the entire
ANPR which led to the opportunity to register speed
violence of over 20 % in km/h, higher than before the
application of the algorithm. Next improvement was
obtained on the same ANPR system, equipped with two
cameras (infrared and color). Usually, the maximum car
speed registered by two cameras does not exceed 130 km/
h. After the application of the CSP process-oriented
approach and the mentioned algorithm, the speed
increases to 160 km/h without any hardware changes.

Application of the algorithm in the automated
identification system (ASI) [6] intended to optimize
product prices in the supermarkets significantly reduced
the execution time of the entire ASI. This result was
obtained by splitting the calculation over clustered in
categories products and running the calculations
(processes) in parallel.

CONCLUSIONS

The correctness of the algorithm was proved in
the development of a number of real-time systems in-
tended to parcels’ and letters’ processing, and in the
discussed above system. Usually, these systems include
up to 10-20 OS processes with up to 10 threads per
process. More details regarding the use of the process-
oriented CSP approach and the algorithm for the elabo-
ration of these systems are given in [7, 8].

The algorithm is effective when developing com-
plex software systems from scratch. It is not effective or
not applicable when building systems with third party
executable processes which can not be recompiled or
rebuild. Then redistribution or reallocation of threads from
one process to another is impossible, as well as merging or
splitting of processes. A possible solution in this case is to
use the Windows Performance Monitor program or similar
ones and their counters, in order to take decisions for
processes’ allocation/reallocation over processors or cores.

REFERENCES

1. C.A.R. Hoare, Communicating Sequential Processes,
Prentice Hall, 1985, extended and updated 2004.
2.G. Hilderink , Embedded Control System Software Design
based on CSP, TESI Workshop 2002 - paper, University

of Twente, The Netherlands, 2002.

3. A. Atanassov, Web-Based System for Monitoring,
Diagnostics and Control, of Postal Automation Systems,
International Conference Automatics and
Informatics’11, proceedings, published by John
Atanasoff Society, of Automatics and Informatics,
Bulgaria, Sofia, October 3-7, 2011.

4. A.Atanassov, Advanced Software Architecture Of an
Automatic Number Plate Recognition System, J. Univ.
Chem. Technol. Met. (Sofia), 47, 1, 2012, 46-53.

5. A. Atanassov, Controlling An Automatic Number Plate
Recognition System Via Web-Based Component,
International Conference Automatics and
Informatics’10, proceedings, published by John
Atanasoff Society, of Automatics and Informatics’,
Bulgaria, Sofia, October 3-7, 2010.

6. A. Efremov, A. Atanassov, F. Tomova, D, Efremova,
Combined group step regression and its application in
market segment, Journal Automatics & Informatics
volume 1/2012, Sofia, 2012.

7. A. Atanassov, Process-oriented Approach to Control
Interface Communications of Automated Parcels’ Pro-
cessing Systems, Journal Automatics & Informatics
volume 4/2009, (pp 46-53), Sofia, 2009.

8. A. Atanassov, F. Tomova, Web-Based Subsystem
For Tuning Of An Automatic Plate Number Rec-
ognition System, Sixth International Conference,
Challenges In Higher Education And Research In
21st Century, 2008, (pp 399-402), Sozopol, Bul-
garia, 2008.

569

