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ABSTRACT

The main object of investigation is an initial problem of nonlinear non-autonomous system of differential equations.

In the phase space of the system considered a final set of the existence of its solutions is situated. The moment, at which

the solution of initial problem reaches the final set, is called a final moment. At this moment the solution terminates its

existence. The sufficient conditions for the continuous dependence of the final moments of existence of the solutions to

the effects associated with the initial conditions and final set are found.
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INTRODUCTION

The impulsive equations are used mainly for
describing and study the development of dynamic
processes, subjected to the discrete external influences
over time: [1-3], [7], [9-12]. These equations are divided
into several classes, depending on the method of
determining the impulsive moments. In one of these basic
classes, the impulsive moments are determined using the
switching sets, situated in the phase space. (see [4], [5]
and [8]). The impulsive moments in these equations
coincide with the moments in which the solution reaches
the corresponding switching set.

The investigations in the paper are closely related
to the qualitative theory of the impulsive differential
equations, described above.

The object of research is the initial problem for
nonlinear non-autonomous systems of ordinary differential

equations:
dx
5= F(Ex) for o(x(t)#0, (1)
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X(t) =%, @)

where: the function f :R"XD = R", f :(fl’ F2r fn),
the phase space D is non empty domainin R", the final
(switching) function ¢:D — R, the initial point
(t;»%)€ R"™XD and ¢(%,)#0.

With the main problem, we discuss the so-called

perturbed problem
((jj)t( f(t,x) for ¢ (x(t))=0, 3)
x(t5)=%. “)

where: the perturbed switching function
D— R, the perturbed point
fto, e R"xD and(D*(X(*))?fO.
The solutions of both problems above are denoted by
X(t;ty, %, @) and X(:[ '[O,XO o )
( 01 X0 (p) and Y (tO,XO (D , their final (switching)
sets are @ =1X=(X,..., e D; (P(X)—O} and

initial

their trajectories are
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@ ={xe D;¢ (x) =0}, respectively. The mo-
ments {; and t; , which satisfy the next equations:

(p(X(tl;to,Xo,(p))=0,
o (X(t6.%.0) =0

are called final (switching) moments for problems (1), (2)
and (3), (4), respectively.

Definition 1. We say that the switching moment
of initial problem (1), (2) depends continuously on the
initial condition and the switching function, if

Ve>0)(36=6(¢), 0<<e¢):

ty—t,| < 5)

(
(Vt; e R,
(

Vx, e D, x;—xOH<5)
(Ve eC[D,R],
9" (X)—9(x) <8 for xe D)
= \t{ —tl\ <e.
We introduce the following conditions:

HI. The function f € C| R"xD, Rn],
H2. The function ¢ € C'[D, R] .

H3. There exist a constant C,_ip,p >0, such that

(Vx', x"e D)
= o(X)-(x") < C_p, [x—x".

H4. The following inequality is valid:

¢ (x).(gradg(x), f (t,x)) <0
for (t,X)E R+X(D\(I)).

HS. There exist a constant C<gradq)‘f> >0, such that

(V(t,x)e R'xD
= Kgrad(p(x), f(t, x)>‘ > Clyator):

H6. For any point (ty, %, )€ R" X(D\ (I)) , the solution
X(t;ty, Xy ) of initial problem

dx
E=f(t,><), X(ty) =% 5)

exists and is unique for t 2> 1.
MAINRESULTS

Theorem 1. [8] Let the conditions HI, H2, H4, H5
and H6 be valid.

Then the trajectory of problem (1), (2) meets the set @ .

Theorem 2. Let the conditions H1, H2, H4, H5 and
Hb6 be valid.

Then

36 =const > 0):

(
(Ve R, fto—t,|<5)
(

Vx, e D,

%% <3)
(V¢ e C[D,R],

9" (x)~¢(x) <8 for xe D)
=7(6,%.9 )n® 22,

i.e. the trajectory of perturbed problem (3), (4)
meets the perturbed switching set " .

Proof. According to Theorem 1, the trajectory
j/(to, X QD) of problem (1), (2) meets the set @ at the
moment t. Under conditions H6 and HS the next
inequalities are valid:

9 (%) #0 and (grade(x), f (t,x))#0
for(t,X)E R'xD. (6)

Further, we assume that @ (Xo) <0, whence it
follows:

0(X(to1%0,%,9))<0, 9 (X(t;t, %,,¢)) < 0
forty<t<t,

and QD(X(tl;to, XO,(p)) =0.
The case @ (Xo) > 0 is considered similarly.

First, ~we  assume  that o(t)
:go(X(t;to,Xo))SO for each t=t;,, where
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X(t 1o Xo) is the solution of problem (5). Then { is
the point of maximum for the function ¢ . Hence

0= $0(0)= S o(x(tit.%))
:;;¢@aﬁm%»;j%w%xﬁ

0 d
"‘y(o(x(tl;tho))axz (tl;t01XO)

+a?(n(P(X(t1;to’Xo));Xn(tl;tO’XO)
:aa)(l(p(x(tl;to’xo))fl(tl’x(tl;to’XO))
+ 0 o (x(tito, %)) F2 (o X(tito, %))

X
0 (X(Lite, %)) 7 (6 X (it %))
rad(P tl'to'xo))'
X (bt %))

The last equality contradicts the second of inequali-
ties (6). Therefore, there exists a point 7 >1, such that
o(r) =9 (X(‘L’ 1t % )) > 0. From the conti-nuity of
function ¢ for t =1, the inequality above and the as-

sumption ¢ (ty)= (p(X(tO it Xo)) =0 (%)<0, it
follows that there exists a positive constant O, such
that:

(VXE B;, (xo)):> ¢(x)<0

and

(VXE B;, (x(r;to,xo))): ¢(x)>0.
Let:

sr—int o (x): xe 8, (%)}

and

A=int () xe B, (x(rito 1))

576

According to the theorem of continuous depen-
dence of the solutions of systems differential equations
on the initial condition (see Theorem 7.1, § 7, Chapter I,
[6] — for the brevity, we shall call theorem on continu-
ous dependence), it follows:

(35, 0<5<5¢):(Vt;e R,
(Vx;eD )
= ([x(t:t, %)~ x (1, %) <8,

for 7™ = max{t;, t,} <t <) %
Suppose that for the continuous function

ty —to| < 5)

(p* :D — R, the inequality below is valid
‘(p* (x)—q)(x)‘ <min{AA"} for xe D .

As HXO XOH<5<5 we conclude that
XOE B; (Xo) So, we have
<p*(3<8)*=<p*(><8*)—<p(xo)*+¢(><8) .
<o (%)- (%) +o (%
=o' (%)= (%) -0 (%)
<A'-A"'=0.

From (7) for t=1 it follows x(r;t;,xg)

B5<n (X(T i Xo)) Therefore

o (x(r:5.%)) =0 (x(r:%.%)) ©)
~o(x(z:t0.))+o (x(r:t.))
z‘q)(x(r;t;,x;))‘
o (x(T:6.%)) -0 (x(z:6.%))
>A"-A"=0.

Using (8) and (9), we find that there exists a point
t;, t* <'[* < T ,such that (D* (X(t1 t;, )) =0.The
last equality means_that the trajectory ¥ to'xo =
X(stx),
Yt %0 )=7(t: %), tost<t,

we deduce that the trajectory of perturbed initial problem
(3), (4) meets the perturbed switching set ¢p* at moment tl* .

t=> to meets set ¢p" at moment t .As
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The theorem is proved.

Theorem 3. Let the conditions HI, H2, H4, H5 and
H6 be valid.
Then the next inequality is valid

tl_toS

c o (%) (10)

(grade, f)

Proof. Under the assumption made (see condi-
tion H6) X, € D\ @ is fulfilled. Then, there exists a
point T, t, <7 <t ,such that:

= QD(X(tl;to’ Xo’(P))_(P(X(to;to’ Xo’go))‘
- o (x(r %)) (L)
= <grad

X(T5tos X, (P)))
f(7,X(7;t5, %, 0) ‘.\tl—to\
Cgrad(pf ( —t )

whence it follows (10).
The theorem is proved.

Theorem 4. Let the conditions HI-H6 be valid.
Then the following inequality is true

P (% P) (11)

C .
—t <t
Lty S <

(grade, f)

Proof. Like the proof in the previous theorem, we
assume that the initial point X, € D \ @ . Under Theorem
1, the solution X(t; th, %, (p) of problem (1), (2) cancels
the function ¢ at moment {,i.e. the moment t, exists.
Let € be an arbitrary positive constant. Let the point
x.e®, ie. @(x)=0 and p(%,X%)
:JXO — Xg{ <p (%, P)+e. We again denote

(0] t)=§0 X(t;to,XO)) for t=>t,. Recall that
X(t;to, Xy ) is the solution of problem (5). It is also
satisfied

X(tty, %, @) =X(t;ty, %), t, St

whence, we deduce that

o(t) =0 (x(t;t), %))

:§D(X(t1;to’ Xo’(P)) =

We assume (based on condition H4) that
(grade(x), f (t,x))>0, (t,x)e R"xD
and @ (%,)<0. (12)

Then ¢ (ty)=¢(%,)<0. Using condition H5
for t >1,, we find that

Lo0)
:<grad(p(x(t;t0,xo)), f (t,x(t;to,><0))>

= [gradg (x(t:t, ). F (6 X(68,%)|
C

\Y

{gradg. f)
=const > 0.
There is a point 7, {; <7 <1, such that
0 (t)-9(t))
= 0(1) (t=1)2 Cgg 1) (b =Yo).

From the inequality above, we obtain successively

Lt [o(t)-6(t)

(grade, f)

= L ‘_(P(X(to;to’ XO))‘

(grade, f)

1
= o(%))

(grade, f)

1
==——Jo(x)-o(x)

(grade, f)

CLip(p _
< I%-x]

(grade, f)

< CCLipw (p(xo’q))Jrg),

(grade, f)

Since £ is an arbitrary constant, it follows that
(11) is satisfied.
The theorem is proved.
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Theorem 5. Let the conditions H1-H6 be valid.
Then (35 =const > 0) such that:

(Vt;e R, \t;—to\<6) (13)

(nge D,

X% =% <8)
(Ve eC[D,R],
‘(0*(X)—<p(x)‘<5 for xe D)

the following inequality is valid
* * CL * *
i<t
t; to_C< (p(xo,CD )+25) (14)
grado, f)

Proof. According to Theorem 2, if the constant
o is sufficiently small and if the inequalities (13) are
fulfilled, then the solution X(t;t;, X;,(D*) of problem
(3), (4), cancels the function (p* at moment t; . Asin
the previous theorem, on the basis of condition H4, we
assume that inequalities (12) are fulfilled.

We introduce the auxiliary notations:

0 (X)=0(x)-8, xeD,
0" (X)=(x)+8, xeD,
@ ={xe D, ¢’ (x)=0},
@ ={xe D, o (x)=0}.

Taking into account the inequalities (13), we
conclude that

07 ()=p(x)-8<¢ (X)
<p(x)+6=¢"(x), xeD.

From the first inequality of (12), we establish
that

(36 >0):(Vx, [[x—x]<8)
= xe D and ¢(x)<0.

Having in mind (13), we arrive at the conclusion

(%) =0(x(t:t.%))<0 (15)
578

Consider the function ¢° Z[t;,OO) — R, de-
fined by the equality

)

Under inequality (15), it follows that
07 () =07 (x(t:%.%))
= (x(ts:t5,%)) -6
=p(x)-8<p(x)<0.

As above, we find that:

d _5 d *
EQ) (t)= aq)(t) 2 Clyaspry) >0 1> 15,
Then, there exists a moment t- o , ti KRS t; ,such
-5 (4-6 . . . *
that ¢ (tl ) =0, i.e. the solution X(t, to, Xo) cancels
function (p_‘S at the moment t,° 7,
We obtain the next estimate using the previous
theorem 4

C . .
——p (%, @) (16)

(grade, f)

70—t <

C,. o s R
< S (o5, )p (o0
(grade, f)
C| * * _ +
<o (p(6.07)+p (@7, 07))

(grade, f)

< Clipy (p(x;,cl)*)+25)'

(grade, f)

On the one hand, we have
) (x(t;;t;, xo)) <0.
On the other hand, it is satisfied
o (X(t7t5,5)) -8 =0
= (x(tl“s;t;,%))> 0.
The above two inequalities imply inequality

t; < t; <t S Therefore, t; —ts <t o —t;. Whence,
using (16) we reach (14).
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The theorem is proved.

Theorem 6. Let the conditions H1-H6 be valid.
Then

(Vo =const>0)(38 =5 () > 0):

(Ve R, fto—t,|<5)
(nge D, ‘<5)
t(P_ Lipp

St e

where tl*w is the moment, at which solution X(t; t(*,, X(*))
cancels switching function @, and t1 is the moment at
which solution X(t;to, Xo) (or which is also, solution
X(t; th, %, q)) ) cancels the same switching function.

Proof. As a result of Theorem 1, we obtain that
every one of the solutions X(t; t; , XO) and X(t; th, % )
cancels switching function @ ,i.e. the moments tl*w and
t, exist.

For the convenience, we suppose that 1, < t; ? s
satisfied. Let @ be an arbitrary positive constant. From
the theorem of continuous dependence, it follows that
there exists constant § > Q such that, if the require-
ments of the proving theorem are satisfied, then it fol-
lows

((t1 (I )X(tl’to’ ))
= X1t %) - X (Gt %, )| < .

We have

p(x(t:6.%).2)
<p(X(Lit %) X(Lity, %)) S @.
Applying Theorem 4, we reach the estimate

b =t

C, -
sﬁp(x(tl;to,xo),d))
(grade, f)
C .

(grade, f)

The theorem is proved.
Theorem 7. Let the conditions HI-H6 be valid.
Then

(VYo =const >0)

< Lipp )

)

(grade, f)

where t "% is the moment at Whlch the solution

(1’ to’xo) cancels function Q" (X) go( )+9,
defined for xe D, and tfe
solution X(t;tO,XO) cancels the same function.

is the moment, at which

Proof. Let us again, for the convenience to assume
that the inequality @ (X0 ) < O isvalid. Then there exists
apositive constant © = O (X, ), such that

(V6,0<0<0)
+0

= ¢(%)+0=0"(x)<0.

From Theorem 1, we obtain that any of the solutions
X(t; t;, XO) and X(t to, Xo) cancels the function (p
the moments t1+9 and t , respectively. Further, the
reasoning are as in the previous theorem. The inequality
t o< t;w is valid and @ is an arbitrary positive
constant. By the theorem of continuous dependence, it
follows that there exists a positive constant § , such that
if the restrictions of the initial points (t;, XO) and

(ty, %) are satisfied, then

p(X(tI":tS,%),X(tfe:to,xo))

= x(ti6%) - x(5" st 0 ) <.
Then, we have

p(x(t7%.%).0)

<p(X(6755.%). X(6%5t. %)) < o.
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We apply Theorem 4 and get the estimate in
Theorem 7.

Theorem 8. Let the conditions HI-H6 be valid.

Then the switching moment of initial problem (1),
(2) depends continuously on the initial condition and the
switching function.

Proof. Let § be an arbitrary positive constant.
We consider the functions ¢, (p*,(p“s,q)"‘S ‘D—-R,
where:

- @ is a switching function;
- ¢ e C[D,R]|¢" (x)-0(x)| <8,

xe D;
- 9% (X)=9(x)-6, xe D;
-9 (X)=¢(x)+68,xe D,
For any xe D . we have:
P’ (X)<p(x)< 9™ (X),
0 () <o ()< (%).

As a result of Theorem 1, we obtain that if con-

stant § is sufficiently small and in particular, if the
values:

s

07 (%), ¢(%)and ¢~ (x,)

have the same signs, then the solution X ('[; to, X )
cancels functions go“s , (p* and go"s , successively and

solution X (t; th, % ) , cancels one after another functions

(p+5, ¢ and go"s . Assume that, the values above are

negative. Let the following equalities be satisfied:
0" (x(t8,%))=0)

o (x(66.%))=0

o (x(538%))=0,

580

0™ (X(t%11,%)) =0,
(P(X(tl;to’xo)): 0,
0~ (x(t:5,%)) =0.

The moments, in which the functions referred
above are canceled, satisfy the inequalities:

<t <70 70 <t <t (17)
Let @ be an arbitrary positive constant. We aSJ-

ply Theorem 7 for the solutions x(t;t;,x;
X(t;to, XO) and function @‘5 and obtain that

]

(36 =6 (w)>0): (Vt;e R',

ty —to| < 5)

(‘v’xge D,

X, =% <§)

(V6,0<6<25=0)
C

<% u
C

(grade, f)

*~5+6 -6+6
=L -4

(18)

where
t;_'ho is the moment in which solution

X(t; (S ) cancels function

0" (x)=9(x)-5+6, xe D,

t 99 is the moment in which solution

x(t;t,, Xo) cancels the same function. From (18), for
6=0 and @ =24, we find out the next estimates,
respectively:

* C
t1*5 _t;5‘ S C&a)’

(grade, )

(19)

C,.
*+8 +6 Lipp
A AL e

1

(0
(gradg, f)

By Theorem 3, more precisely from inequality (10)
(after replacing in the theorem: @ with (p’5 ; t, with
tf‘s ; 1, with t{‘s and X, with X(tféito, Xo)), we have

70—t
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IA

el (x(60))

(grade, )

= L ‘§0+6(X(tf5;to’xo))

(grade. f)
_(p—é (x(t1*<S 10, % ))‘
-1 2

20
(grade, f) (29)

By the inequalities (17), (19) and (20), we obtain
successively

‘tl —tl‘ < max{ti"s,t;‘s}—min{tf‘s,tf‘s}

C
<1 o5pp m g,
(grade, f) (grade, ) ’

The theorem is proved.
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