SYNTHESIS OF DOPED BISMUTH TITANATE CERAMICS WITH Nd,O, AND SiO, AND THEIR ELECTRICAL PROPERTIES

S. Slavov¹, M. Krapchanska², E. Kashchieva¹, S. Parvanov¹, Y. Dimitriev¹

Received 16 January 2012 Accepted 20 December 2012

¹University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd., 1756 Sofia, Bulgaria ²Bulgarian Academy of Sciences, Institute of Electrochemistry and Energy Systems, Acad. G. Bonchev Str., Bl. 10,1113 Sofia, Bulgaria E-mail: stanislavslavov@mail.bg

ABSTRACT

Bismuth-titanate ceramics containing SiO_2 and Nd_2O_3 as additives are synthesized by melt quenching method in the system Bi_2O_3 - TiO_2 - Nd_2O_3 - SiO_2 at temperature range $1260-1500^{\circ}C$. The phase composition of the obtained materials is determined by X-ray diffraction analysis and energy dispersive spectroscopy. Using scanning electron microscopy different microstructures are observed in the samples depending on the composition. The addition of SiO_2 and Nd_2O_3 allows controlling the crystallization, glass formation ability, melting temperature and Curie temperature. Different values of conductivity, dielectric losses and relative permittivity are obtained depending on the composition. Measurements of the electrical conductivity, capacitance and dielectric losses of selected samples are performed by DC resistible bridge and digital capacity meter (with frequency of 1 kHz) using two-terminal method and a suitable sample holder with graphite electrodes. It is established that all investigated samples are dielectric materials with conductivity between $10^{\circ 9}$ and 10^{-13} (Ω cm)-1 at room temperature, dielectric permittivity from 1000 to 3000 and dielectric losses $tg\delta$ between 0,0002 and 0,1.

Keywords: bismuth titanate ceramics, melt quenching, electrical characteristics, microstructure.

INTRODUCTION

Aurivillius family oxides including Bi₄Ti₃O₁₂ are of great interest with their potential use for electronic applications with high temperature piezoelectric properties, and ferroelectrics with high Curie temperature [1]. They are also typical with a large polarization, good fatigue endurance [2, 3] and high losses [4].

Many techniques have been employed for preparing a layered structure of bismuth titanate powders and oriented ceramics. Bismuth-based ferroelectric compounds and phase formation in them are strongly influenced by the method of preparation [5-8].

The main established phases in the system Bi₂O₃-

 TiO_2 are $Bi_4Ti_3O_{12}$ and $Bi_{12}TiO_{20}$ [9].

S. Kunej et all.was describing the solubility limits in the system $\rm Bi_2O_3$ - $\rm TiO_2$ - $\rm Nd_2O_3$ of three solid-solutions: $\rm Bi_{(1,6-1,08x)}Nd_xTi_2O_{(6,4+0,3x)}$, (0,25< x<0,96), $\rm Nd_2$ - $\rm Bi_xTi_2O_7$, (0< x<0,35), and $\rm Bi_{4-x}Nd_xTi_3O_{12}$, (0< x<2,6) [10].

In other hands introduction of 20 - 40 mol% SiO_2 simulates the partial amorphization of the samples and the main established phases are either $Bi_2Ti_2O_7$ and $Bi_4Ti_3O_{12}$ or only $Bi_4Ti_3O_{12}$ [11-13].

The introduction of SiO₂ and Nd₂O₃ as additives in bismuth-titanate ceramics and these phases attract attention for obtaining of materials with more effective electrical and dielectric properties [14-20].

These results motivated the purposes of the present

work: to prepare by melt quenching method composite materials in the system Bi₂O₃-TiO₂-SiO₂-Nd₂O₃ and the study their electrical properties depending on composition and temperature.

EXPERIMENTAL

The samples are synthesized at fast cooling to room temperature, performed by pouring of the melts between two cooper plates (with temperature gradient of the cooling 10^2 K/s). The melting is made in alumina crucibles at 1260 and 1500° C for 10-15 min depending on the composition.

The phase formation is studied by X-ray diffraction analysis (XRD - TUR M62, Cu-Kα radiation and Bruker D8 Advanced Diffractometer, Cu-Kα radiation). Chemical composition is determined by energy dispersive spectroscopy (EDS, EDAX 9900). The microstructure is observed by scanning electron microscopy (SEM - 525M, Philips).

The electrical conductivity, capacitance and dielectric losses of the selected samples are performed by DC resistible bridge and digital capacity meter E8-4 (1 kHz) using two-terminal method and a suitable sample holder with graphite electrodes.

RESULTS AND DISCUSSION

The obtained samples may be considered as ceramics and glass-ceramics materials because they have crystalline milk like parts instead of the dark or

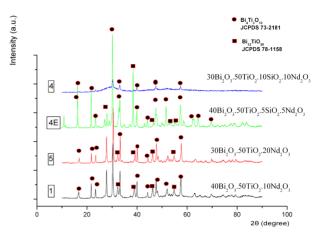


Fig. 1. XRD patterns of sample with composition 40Bi₂O₃.50TiO₂.10Nd₂O₃, 30Bi₂O₃.50TiO₂.20Nd₂O₃, 40Bi₂O₃. 50TiO₂.5SiO₂.5Nd₂O₃, 30Bi₂O₃.50TiO₂.10SiO₂. 10Nd₂O₃.

transparent glass regions (Table 1). According to the X-ray data (Fig. 1) and EDS data (Figs. 2-5) several phases are formed including $\mathrm{Bi_2Ti_2O_7}(\mathrm{Bi_2Ti_2O_7}-\mathrm{JCPDS}$ 32-0118), $\mathrm{Bi_4Ti_3O_{12}}$ ($\mathrm{Bi_4Ti_3O_{12}}-\mathrm{JCPDS}$ 73-2181), $\mathrm{Bi_{12}TiO_{20}}$, ($\mathrm{Bi_{12}TiO_{20}}-\mathrm{JCPDS}$ 78-1158) and $\delta\text{-Bi_2O_3}$ ($\delta\text{-Bi_2O_3}-\mathrm{JCPDS}$ 27-0052).

Increasing TiO_2 content (above 50 mol %) and decreasing Bi_2O_3 content (below 40 mol %) lead to formation of adventitious main phase $\text{Bi}_4\text{Ti}_3\text{O}_{12}$. At high Bi_2O_3 content (in the range 40 - 60 mol %) the identified phases are $\text{Bi}_4\text{Ti}_3\text{O}_{12}$, $\text{Bi}_{12}\text{TiO}_{20}$, and $\delta\text{-Bi}_2\text{O}_3$ [6 - 8].

Addition of Nd₂O₃ doesn't essentially change the phase formation [10, 13].

lable 1. Starting compositions, visual observations, method of cooling for sel	elected samples.
--	------------------

	Sample	Visual observation	Method of cooling
A	30Bi ₂ O ₃ .50TiO ₂ .20SiO ₂	Black with milky regions	T _m =1400 °C Fast Cooling
		Diack with milky regions)
4	$30 \text{Bi}_2 \text{O}_3.50 \text{TiO}_2.10 \text{SiO}_2.10 \text{Nd}_2 \text{O}_3$		$T_{\rm m} = 1450 {\rm ^{o}C}$
		Dark silver	Fast Cooling
5	30Bi ₂ O ₃ .50TiO ₂ .20Nd ₂ O ₃		T _m =1500 °C
		Milk silver with yelow additives	Fast Cooling
В	40Bi ₂ O ₃ .50TiO ₂ .10SiO ₂		$T_{\rm m} = 1260 {\rm ^oC}$
		Black with milky regions	Fast Cooling
4E	40Bi ₂ O ₃ .50TiO ₂ .5SiO ₂ .5Nd ₂ O ₃		$T_{\rm m} = 1450 {\rm ^oC}$
		Milk silver	Fast Cooling
1	40Bi ₂ O ₃ .50TiO ₂ .10Nd ₂ O ₃		T _m =1450 °C
		Dark yelow with silver additives	Fast Cooling

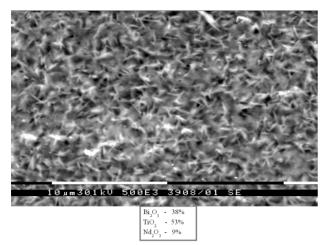


Fig. 2. SEM micrograph and EDS data of sample with composition $40\text{Bi}_2\text{O}_3.50\text{TiO}_2.10\text{Nd}_2\text{O}_3$ melted at 1450°C and fast cooled.

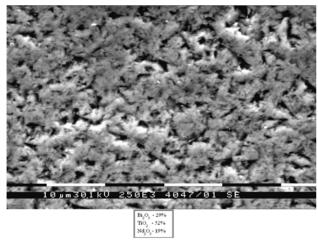


Fig. 3. SEM micrograph and EDS data of sample with composition $30 \text{Bi}_2 \text{O}_3.50 \text{TiO}_2.20 \text{Nd}_2 \text{O}_3$ melted at $1500 ^{\circ}\text{C}$ and fast cooled.

The formation of the phases Bi₂Ti₂O₇ and Bi₄Ti₃O₁₂ is strongly influenced not only by the composition and melting temperature but also by the cooling rate [13].

To make comparison of the electrical properties we selected four samples of the system $\mathrm{Bi_2O_3}$ - $\mathrm{TiO_2}$ - $\mathrm{SiO_2}$ - $\mathrm{Nd_2O_3}$, with similar content of $\mathrm{Bi_2O_3}$ and $\mathrm{TiO_2}$. The first two of them are in combination $30\mathrm{Bi_2O_3}$ - $50\mathrm{TiO_2}$ - $\mathrm{xSiO_2}$ - $\mathrm{yNd_2O_3}$, (x=10, 0; y=10, 20) and the second two respectively: $40\mathrm{Bi_2O_3}$ - $50\mathrm{TiO_2}$ - $\mathrm{xSiO_2}$ - $\mathrm{yNd_2O_3}$, (x=5, 0; y=5, 10). Additionally we measured the electrical properties of two samples, synthesized in our previous study [13]: $30\mathrm{Bi_2O_3}$ - $50\mathrm{TiO_2}$ - $20\mathrm{SiO_2}$, and $40\mathrm{Bi_2O_3}$ - $50\mathrm{TiO_2}$ - $10\mathrm{SiO_2}$.

Arrhenius plot of the conductivity and dielectric

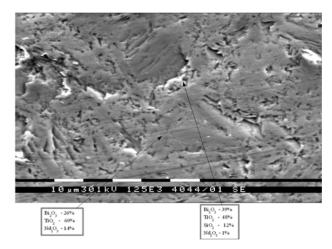


Fig. 4. SEM micrograph and EDS data of sample with composition $40\text{Bi}_2\text{O}_3.50\text{TiO}_2.5\text{SiO}_2.5\text{Nd}_2\text{O}_3$ melted at 1450°C and fast cooled.

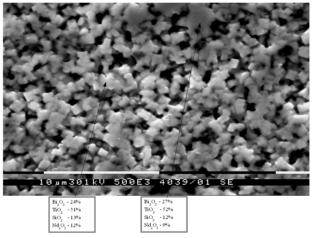


Fig. 5. SEM micrograph and EDS data of sample with composition $30\text{Bi}_2\text{O}_3.50\text{TiO}_2.10\text{SiO}_2.10\text{Nd}_2\text{O}_3$ melted at $1450\,^{\circ}\text{C}$ and fast cooling.

losses in dependence on the temperature are presented in Fig. 6.

Increasing of the Nd_2O_3 content up to 10 mol % increases the activation energy and increasing of the SiO_2 content up to 10 mol % decreases the activation energy. Co-addition of SiO_2 and Nd_2O_3 till 5 mol % leads to activation energy with value close to 1 eV in the temperature range $500-830^{\circ}C$. The next increasing to 10 mol % of the SiO_2 and Nd_2O_3 content leads to activation energy to 1,7 eV in temperature range 500 - 830°C, that process is typical for decreasing of hole mobility [21, 22].

Doting with Nd₂O₃ decreases the conductivity and increases the melting point and Curie temperature (Fig. 7),

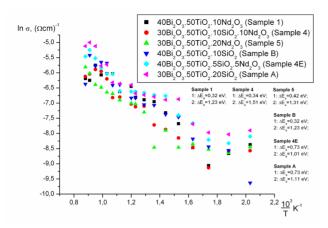


Fig. 6. Arrhenius plot of the conductivity in dependence on the temperature for samples with compositions $30\text{Bi}_2\text{O}_3$. 50TiO_2 . 20SiO_2 , $30\text{Bi}_2\text{O}_3$. 50TiO_2 . 10SiO_2 . $10\text{Nd}_2\text{O}_3$, $30\text{Bi}_2\text{O}_3$. 50TiO_2 . $20\text{Nd}_2\text{O}_3$, $40\text{Bi}_2\text{O}_3$. 50TiO_2 . 10SiO_2 , $40\text{Bi}_2\text{O}_3$. 50TiO_2 . 5SiO_2 . $5\text{Nd}_2\text{O}_3$, and $40\text{Bi}_2\text{O}_3$. 50TiO_3 . $10\text{Nd}_2\text{O}_3$.

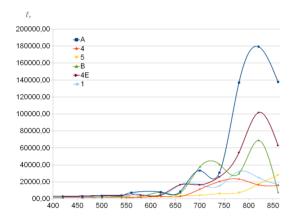


Fig. 7. Plot of the relative permittivity in dependence on the temperature for samples with compositions $30\text{Bi}_2\text{O}_3.50\text{TiO}_2.20\text{SiO}_2$, $30\text{Bi}_2\text{O}_3.50\text{TiO}_2.10\text{SiO}_2.10\text{Nd}_2\text{O}_3$, $30\text{Bi}_2\text{O}_3.50\text{TiO}_2.20\text{Nd}_2\text{O}_3$, $40\text{Bi}_2\text{O}_3.50\text{TiO}_2.10\text{SiO}_2$, $40\text{Bi}_2\text{O}_3.50\text{TiO}_2.5\text{SiO}_2.5\text{Nd}_2\text{O}_3$, and $40\text{Bi}_2\text{O}_3.50\text{TiO}_2.10\text{Nd}_2\text{O}_3$.

especially for the sample containing 20 mol % Nd₂O₃.

Apex in the thermal dependence of dielectric losses (Figs. 8 and 9) is may be connected to increasing of ionic mobility.

CONCLUSIONS

This investigation shows that by the applied method of the melting may be produced different polyphase bismuth titanate glass-ceramic materials in the

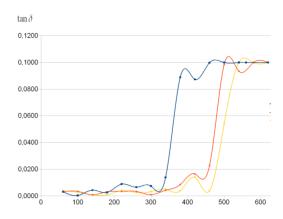


Fig. 8. Plot of the dielectric losses in dependence on the temperature for samples with compositions $30 Bi_2 O_3.50 TiO_2.20 SiO_2$, $30 Bi_2 O_3.50 TiO_2.10 SiO_2.10 Nd_2 O_3$ and $30 Bi_2 O_3.50 TiO_2.20 Nd_2 O_3$.

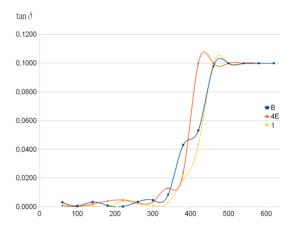


Fig. 9. Plot of the dielectric losses in dependence on the temperature for samples with compositions $40Bi_2O_3.50TiO_2.10SiO_2, 40Bi_2O_3.50TiO_2.5SiO_2.5Nd_2O_3,$ and $40Bi_2O_3.50TiO_2.10Nd_2O_3.$

system ${\rm Bi_2O_3\text{-}TiO_2\text{-}Nd_2O_3\text{-}SiO_2}$. Addition of ${\rm Nd_2O_3}$ in the samples increase of the melting temperature and decreases of glass-formation tendency. It is established that all investigated samples are dielectric materials with conductivity between 10^{-9} and 10^{-13} (Ω cm)⁻¹ at room temperature, dielectric permittivity from near 1.10^3 to 3.10^3 and dielectric losses $tg\delta$ between 0,0002 and 0,1. Co-addition of ${\rm SiO_2}$ and ${\rm Nd_2O_3}$ in the samples leads to generally changes of dielectric losses and conductivity.

Acknowledgements

The study was performed with financial support of UCTM, Sofia under Grant № 10932/2011.

REFERENCES

- 1. C. Araujo, J. Cuchiaro, L. Mc Milan, M. Scott, J. Scott, Fatigue free-ferroelectric capacitors with platinum electrodes, Letters to Nature, 374, 1995, 627-629.
- B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, W. Jo, Lanthanum-substituted bismuth titanate for use in non-volatile memories, Letters to Nature, 401, 1999, 682-684.
- H. Maiwa, N. Lizawa, D. Togawa, W. Sakamoto, M. Yamada, Shin-ichi Hirano and T. Hayashi, Electromechanical properties of Nd-doped Bi₄Ti₃O₁₂ films: A candidate for lead-free thin film piezoelectics, J. Appl. Phys., A 82, 11, 2003, 1760-1762.
- 4. Damjanovic, M. Demartin-Maeder, P. Duran Martin, C. Voisard, and N. Setter, J. Appl. Phys., 90, 11, 2001, 5708.
- S. Kojima, A. Hushur, F. Jiang, S. Hamazaki. M. Takashige, M. Jang, S. Shimada, Crystallization of amorphous bismuth titanate, J. Non-Cryst. Solids, 2001, 250-254.
- K. Sunahara, J. Yano, K. Kakegawa, Preparation of Bi₄Ti₃O₁₂ particles by crystallization from glass, J. Eur. Cer. Soc., 26, 2006, 623-626.
- K. Gerth, Ch. Russel, Crystallization of Bi₄Ti₃O₁₂ from glasses in the system Bi₂O₃/TiO₂/B₂O₃, J. Non-Cryst. Solids, 221, 1997, 10-17.
- 8. K. Gerth, Ch. Russel, Crystallization of Bi₃TiNbO₉ from glasses in the system Bi₂O₃/TiO₂/Nb₂O₅/B₂O₃/SiO₂, J. Non-Cryst. Solids, 243, 1999, 52-60.
- 9. T. M. Bruton, Study of the liquidus in the system Bi₂O₃-TiO₂, J. Sol. State Chem., 9, 1974, 173-175.
- S. Kunej, S, Skapin, and D. Suvorov, Phase Relations in the Pyrochlore-Rich Part of the Bi₂O₃-TiO₂-Nd₂O₃ System, J. Am. Ceramic Society, 92, 10, 2009, 2373-2377.
- 11. M. Krapchanska, Y. Dimitriev, R. Iordanova, Phase formation in the system Bi O -TiO -SiO, J. Univ. Chem. Techol. Met. (Sofia), 43, 2006, 307.

- 12. E. Kashchieva, M. Krapchanska, S. Slavov, Y. Dimitriev Effect of synthesis route on the microstructure of SiO₂ doped bismuth titanate ceramics, Process. Appl. Ceram., 3, 4, 2009, 171–175.
- 13. Stanislav S. Slavov, Milena Z. Krapchanska, Elena P. Kashchieva, Yanko B. Dimitriev, Electrical characteristics of bismuth titanate ceramics containing SiO and Nd₂O₃, Process. Appl. Ceram., 4, 1, 2010, 39-43.
- 14. Qing-Yuan Tang, Yan-Mei Kan, Pei-Ling Wang, Yao-Gang Li, Guo-Jun Zhang, Nd/V Co-Doped Bi₄Ti₃O₁₂ Power Prepared By Molten Salt Synthesis, J. Am. Ceramic Society, 90, 10, 2007, 3353-3356
- 15. T. Kojima, T. Sakai, T. Watanade and H. Funakudo, Large Remanent Polarization of (Bi,Nd)₄Ti₃O₁₂ Epitaxial Thin Films Grown by Metalorganic Chemical Vapor Deposition, Appl. Phys. Lett., 80, 15, 8, 2002, 2746.
- 16. J. K. Kim, S. S. Kim, W. J. Kim, Effects of annealing conditions on the electrical properties of Bi_{4-x}Nd_xTi₃O₁₂ (x=0.46) thin films processed at low temperature, J. Appl. Phys., A 82, 2006, 737-740.
- 17. W. Sakamoto, M. Yamada, N. Iizawa, Yu-Ki Muzutani, D. Togaza, K. Kikuta, T. Yogo, T. Hayashi and Shin-Ichi Hurano, Preparation and Properties of Bi_{4-x}Nd_xTi₃O₁₂ Thin Films by Chemical Solution Deposition, J. Electroceramics, 13, 2004, 339-343.
- 18. D. Wu, A. Li, N. Ming, Structure and electrical properties of of Bi_{3.15}Nd_{0.85}Ti₃O₁₂ ferroelectric thin films, J. Appl. Phys., A 95, 8, 2004, 4275-4281.
- M. Demartin-Maeder and Damjanovic, Piezoelektric Materials in devices, ed. N. Setter, 2002, p. 389.
- 20. M. Chen, Z.L. Liu, Y. Wang, C.C. Wang, X.S. Yang, K.L. Yao: Ferroelectric properties and microstructures of Nd₂O₃ doped Bi₄Ti₃O₁₂ ceramics, Phys. Stat. Sol. A Appl. Res., 200, 2003, 446-450.
- 21. H. S. Shulman, Piezoelectric bismuth titanate ceramics for high temperature applications, Ph.D. thesis №1646, Lausanne, EPFL, 1997, p.70.
- 22. Stanislav S. Slavov, Elena P. Kashchieva, Svetlin B. Parvanov, Yanko B. Dimitriev, Conductivity, dielectric loses and dielectric permittivity depending on the temperature of bismuth titanate ceramics and glass-ceramics, containing SiO₂ and Nd₂O₃ as additives, Processing and Application of Ceramics, 6, 3, 2012, 117-122.