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ABSTRACT

The aim of the work is to predict defects of hot-rolled production based on neurostructural modelling. Prediction is 
made by parameters of ladle treatment and continuous casting. Class of neurostructural modelling and algorithm for 
models construction is used to solve the problem.
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INTRODUCTION

The problem of defects detection for hot-rolled 
production by the set of technological parameters of 
ladle treatment and continuous casting was investigated. 
Description of input data is given in Table 1. Observable 
rolling defects are:

- longitudinal cracks;
- transverse cracks;
- friction sockets and net cracks;
- bubbles;
- slag inclusions;
- skins;
- expanded cracks. 
The number of rows with defect skins and expanded 

cracks are about 7,5 % of all data. The number of rows 
with casting and rolling defects are 0.3 % of all data. 
So, the problem of influence of casting parameters on 
rolling defects was stated. We analyzed the influence of 
the following factor groups: 

- chemical composition;
- parameters of ladle treatment;
- parameters of a steel ladle;
- tundish;
- crystallizer pan;
- casting temperature;

- speed mode;
- aftercooling parameters;
- parameters of soft compression and configuring 

stream;
- elongation parameters.

EXPERIMENTAL

We processed the input data and deleted the factors 
with equal or incomplete values. Then we used the cor-
relation analysis and principal component analyses. As 
a result we selected the factors with significant influence 
on rolling defects. At final stage we got input table with 
38 factors and their linear combinations.

For mathematical modelling we coded rolling pro-
duction by 0 and production with any defect as 1. So, 
we have got a problem of classification. We normalized 
the input data into the range [0; 1]. We compared the 
model output y with a threshold T. We realized the clas-
sification function
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0, otherwise.
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One of the most popular approaches for data model-
ling is neural networks modelling [1, 2]. Its extension 
is neurostructural approach. Neurostructural modelling 
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(NSM) is generalization of neural modelling for the wide 
mathematical models classes including feed-forward 
neural networks, some other neural architectures, fuzzy 
Takagi-Sugeno models and hybrid neuro-fuzzy models 
ANFIS (Adaptive Neuro-Fuzzy Implication System) [3]. 

The structure of neurostructural model with m layers 
is superpositional with linear and nonlinear weights:

( )( )( ) xWWWy mm )1()2()2()()( σσ= ,

where )(iW is the matrix of i-th layer weights; )(iσ  is 
the vector function of vector argument, constructed from 
transfer functions of neuron-like elements of i-th layer; 
i = 1, …, m, x and y are input and output vectors cor-
respondently. Instead of artificial neuron we use neuron-
like element (NLE). NLE generalizes usual neuron by 
using any continuous transfer function from a class Ω
. So, one NSM can contain different functions such as 
the most popular sigmoid function
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where
net  is the NLE activation level, or Gaussian function

( ) 2

2

2
)(

s
mnet

enet
−

−
=σ ,

where m and s are some fixed parameters, or any trigo-
nometric function, for instance.

Taking into account the special structure of NSM it 
allows developing and applying common algorithmic 
base for construction and training algorithms. The main 
problems of NSM building are structure and parameters 
identifications.

One of the approaches for structure identification 
is pruning technique [2]. Unfortunately, it has a lot 
of disadvantages. The most perspective approach for 
NSM structure building is constructive [2]. Its idea is 
sequential increasing of number of NLEs and connec-

tions between them. This is the way from simple to more 
complex mathematical models.

We suggested algorithm for NSM construction which 
guarantees error decreasing during addition of new 
neuron-like elements [3]. The algorithm guarantees that 
training error monotone increases while the structure of 
NSM increases too. Let us consider it in details.

Initial parameter of algorithm is the set of admissible 
transfer functions Ω . It necessarily contains the linear 
function ( ) netnet =σ .

Dimensions of input and output layers are known.
Algorithm of NSM construction is the following.
Step 1. Choose a type of NSM. It may be feed-

forward neural network, neural network with RBF 
functions, probabilistic neural network, Takagi-Sugeno 
model or any other NSM structure.

Step 2. Set initial structure of NSM with one hidden 
layer which contains only one NLE.

Step 3. Choose maximum structure of NSM that is 
maximum number of hidden layers and NLEs in each 
layer.

Step 4. Train initial structure by any training algo-
rithm. Save the structure with all weights coded as S0.

Step 5. Add NLE at last hidden layer and set 0 to 
weight connecting it and output NLE.

Step 6. Retrain NSM for each transfer functions from 
the set Ω . After all we choose the transfer function pro-
viding minimal training error. Save the structure with all 
weights coded as S1. Restore the structure coded as S0.

Step 7. Add a new hidden layer before an output 
layer with the only NLE. Set 1 to weight connecting it 
and output NLE.

Step 8. Retrain NSM for each transfer functions 
from the set Ω . After all we choose the transfer func-
tion providing minimal training error. Save the structure 
with all weights coded as S2.

Step 9. Choose the best structure from S1 and S2 by 
minimal value of error. Save the chosen structure and 
weights as S0.

Step 10. Finish the construction process if the final 
structure is achieved. Otherwise go to step 5.

The key idea of the algorithm is setting initial weight 
values for added NLEs. It allows one to guarantee that 
new training results starting from structure S0 will not 
be worse than before retraining.

Obtained NSM can have different transfer functions 
at each NLE. This is the advantage that helps to fill the 

Parameter Value 

Number of factors 227 

Number of rows 16628 

Rolling defects 1255 

Number of casts 71 

 

Table 1. Description of input data.
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data with the minimal structure. The algorithm can be 
complemented by control of decreasing of training error 
at each step. If the decreasing of training error is suf-
ficiently small (less than small positive real number e) 
than the NSM construction can be terminated.

Training NSM is a parameters identification prob-
lem. Often it is a nonlinear least squares problem. We 
have to determine optimal weights w which minimize 
the function
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where Pk Rx ∈)(~   is the input vector, Qk Ry ∈)(~  is 
the output vector, ),( )(k

q xwy  is the q-th model output 
calculated for the vector )(~ kx  from training set, )(~ k

qy  is 
the q-th element of the training output from k-th row. For 
training NSM we used the algorithm based on interval 
approach [4, 5]. It guarantees the global minimum of 
the training problem for multi-extremes function [6]. 

The results of global optimization may be guaran-
teed by the methods based on the interval analysis. The 
interval is connected subset of the set of real numbers 
defined by a pair of real numbers

[ ] { }xxxRxxxx ≤≤∈== :,][

where x  and x are, respectively, the lower and upper 
boundaries of the interval. Arithmetic operations can be 
extended for intervals and interval vectors and matrices 
[4, 5]. The interval functions are the images of ordinary 
functions with intervals as arguments:

( ) { }][:)(][ xxxfxf ∈=
Interval arithmetic operations and interval functions 

have very important property. They are monotone in 
inclusion:

]'[*]'[][*][]'[][],'[][ yxyxyyxx ⊂⇒⊂⊂ ,
for any arithmetic operator *, and
[ ] [ '] ([ ]) ([ '])x x f x f x⊂ ⇒ ⊂ .

An interval algorithm for global optimization is 
essentially use monotone properties.

The main idea of the interval methods of global 
optimization lies in successive decomposition of the 
initial box [w] into sub-boxes and estimation on them 
of the image of the objective function. Convergence is 
ensured by the monotonicity of the interval functions. 

Calculations are stopped when the box width becomes 
smaller than the prescribed precision.

Let f(w), sRw∈ is the objective (minimized) func-
tion, [ ] sw IR∈ is the initial interval vector, where sIR
is the set of s-dimension interval vectors, e > 0 is the 
minimal permissible width of the box.

The basic interval algorithm GlobOpt for global 
optimization is the following [5]:

Step 1. Initialize: [p] := [w].

Step 2. Estimate of the minimum:  ( )][][* pff = ,
where [f] is the inclusion function for f.

Step 3. Initialize of the list: L := {([p], f∗)}.
Step 4. As long as the width of the inclusion function

( )( ) e≥][][ pfwid
,

where wid is the width of interval vector, repeat:
(a) Select the component l for which the box [p] has 

the greatest width: ( )][maxarg
1 i

n

i
pwidl

=
= .

 (b) Bisect [p] by the lth coordinate into [p’] and [p’’].
(c) Calculate

( )]'[][' pff = , ( )]''[]['' pff = .
(d) Remove the pair ([p], f∗) from the list L.
(e) Add the pairs ([p’], f ’) and ([p’’], f ’’) to the list 

L in increase of the second field.
(f) Notate by ([p], f∗) of the first (leading) record 

in the list L.
 The result of the algorithm work is the interval 

vector [p] containing the global solution of the problem. 
Some aspects of application of interval methods to neural 
networks training were considered in works [7 - 9].

The basic interval algorithm for global optimization 
cannot be used in solving practical problems because with 
growing dimensionality the effect of bisection becomes 
less and less appreciable [6]. In interval algorithms it is 
important to develop effective procedures of elimination 
of boxes which do not contain any solution of the prob-
lem. Such procedures are called contractor operators [4]. 
We suggested a number of contractor operators which 
take into account special superpositional structure of 
NSM and weights separation into linear and non-linear 
weights. Analysis and discussion of contractor operators 
for NSM training can be found in detail at [10].

For problem solving we developed software for 
neurostructural modelling. It was developed in C++ in 
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CodeGear 2009 C++ Builder environment. It can run 
under operating system Windows XP and later versions. 
The software realizes algorithms of NSM building based 
on suggested constructive algorithm and interval algo-
rithm for global optimization. Its main functions are:

- loading the training set of input and output data 
from the keyboard or from files of format Microsoft 
Excel and CSV (Comma Separated Values);

- primary preprocessing including normalization of 
input data into the range [-1; 1] or into the range [0; 1];

- setting the type and structure of NSM;
- possibility of use of usual and weighted function 

for training;
- setting  admissible transfer functions Ω ;
- setting  construction and training parameters;
- control of progress of NSM building;
- possibility of stopping  training procedure if sat-

isfactory training error occurs;
- loading and saving structure, weights and general 

results of NSM work at the XML-format file;
- computation of the threshold T for classification 

problems;
- calculation of outputs based on the NSM and sav-

ing of results to text file.

RESULTS AND DISCUSSION
For better results we trained NSM with weighted 

function. The weight w=12.25 (ratio of defects to non-
defects production) was used for rows containing de-
fects. So we took into account heterogeneous character 
of input information.

For estimation of adequacy we divided the given 
data set in two sets: training and testing. Training set had 
80 % of data. We did not use other 20 % of data for train-
ing. Estimation for accuracy for testing set was 80 %. 

Table 2 shows the results of classification for 
some NSMs. For first four models we did not use the 
constructive algorithm. We show results for more full 
comparative analysis.

We see that training errors are smaller for more large 
NSMs. Also we see that the decreasing of the error for 
training set does not guarantee the decreasing of error 
for testing set. We have chosen the 8-th model because 
it shows the best results.

So, we built the following NSM based on the sug-
gested construction algorithm and interval training 
algorithm (model 8 from Table 2):

6 38

0 0
1 1

i i i ij j
i j

y w w w w xσ
= =

 
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∑ ∑

Table 2. Classification results for different models. 

Model No. Number of NLEs Accuracy of classification 

for training set for testing set for primary set 

1 1 (Gaussian) 0.82 0.71 0.81 

2 1 (sigmoid) 0.82 0.73 0.81 

3 2 (two Gaussian 

functions) 

0.84 0.76 0.84 

4 2 (two sigmoid 

functions) 

0.84 0.77 0.85 

5 3 (different 

functions) 

0.84 0.75 0.82 

6 4 (different 

functions) 

0.86 0.78 0.80 

7 5 (different 

functions) 

0.86 0.78 0.80 

8 6 (different 

functions) 

0.87 0.80 0.86 
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where iσ  are transfer functions

nete−+
====
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Number of weights for the NSM is 241. The error for 
training set (sum of squared errors, SSE) is ( ) 5548.09Q w ≈ .

We determined the threshold T = 0.7 by the criterion

∑
=

−=
16628

1

~)(minarg
i

iii yycwT

where wi and c(yi) are weight and class for the i-th ex-
ample correspondently.

Results of defects classification of the best NSM for 
testing set are given in Table 3. It shows that approxi-
mately 50 % of production with defects can be detected 
by obtained mathematical model.

Adequacy of the NSM model for real data not from 
the training and testing sets is approximately 72 %. It is 
less than error on training and testing sets but suitable 
for real metallurgical production.

CONCLUSIONS

We obtained neurostructural model for hot-rolled 
defects prediction based only on parameters of ladle 
treatment and continuous casting. It was determined by 
the neurostructural modelling, constructive and interval 
training algorithms suggested by the authors in earlier 
works. The model gives appropriate results for real data. It 
lets one choose optimal trajectory for product processing.
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