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ABSTRACT

In recent years, the stringent specifications lead to the need of more strict regulations within the plants in order 
to provide products that conform to the market needs. This requires a better appraisal of the mechanisms that influ-
ence the demanded material properties in order to set up the appropriate rules. For the production of steel plates 
for example, a complete steelmaking route from scrap melting, refining, casting, till rolling is required. A great deal 
of information linked to technological parameters involved in the process is already stored in the automation sys-
tems within a plant. With the deployment of machine learning algorithms specific mechanical properties of the final 
products can be related with these factors and two major results can be obtained:

The most important technological parameters that influence the properties under investigation are deduced;
A supervised model that predicts a mechanical property upon a set of input data can be derived within a meas-

urable statistical error.
In this work, two mechanical properties for produced plates, the tensile strength (Rm), and the yield stress (Re), 

were analyzed with respect to 33 independent parameters representing salient features in the whole production pro-
cess. Three data science models, the deep learning, the distributed random forest, and the gradient boosting method 
were deployed for securing the validation of the results. Attention is drawn upon those technological parameters that 
are top selected in all three models. Actual and predicted properties values are also presented.
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INTRODUCTION

The need for a better appraisal of the technological 
parameters involved that influence the demanded mate-
rial properties in order to set up the appropriate rules is 
of paramount importance. However, depending upon 
the number and complexity of processes involved, it 
is sometimes a very difficult task to figure out all the 
technological factors and parameters that influence spe-
cific material properties. In the steelmaking sector for 
example, and specifically in the domain of flat products 
it takes a great number of high temperature processes in 
order to come up with a specific product grade. One has 

to start from the meltshop where scrap is melted in elec-
tric arc furnaces (EAFs) and tapped into ladles in which 
liquid steel is processed in the secondary metallurgy 
stations (LFs, and in special cases in VDs - vacuum tank 
degassers), where the specific chemical analysis of the 
target grade is achieved, and finally casted in big slabs; 
these slabs are left to cool down and then are reheated 
in reheating furnaces in order to be rolled under very 
strict rolling schedules to the final plate dimensions. 
According to product specifications test-pieces from 
the final plates are taken and examined for conformity 
according to specific mechanical properties and mate-
rial soundness. It is easily realized the negative impact 
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upon cost in case that a product batch fails in one or 
more properties. In addition to this, potential customer 
dissatisfaction is very likely to occur in case product 
supply cannot match the signed deadlines. 

It is about a decade that versatile computational tools 
that apply statistics and can be used for decision making 
are given away through the internet. Machine learning 
algorithms have emerged that are capable of handling 
and manipulating huge numbers of data giving rise to the 
appearance of data science. The technological param-
eters treated either as predictors or response variables 
can be implicitly linked into models with a very well 
defined statistical error. In this way, supervised models 
can be developed that can supply a further insight into 
the phenomena that take place in real practice. In the 
present world of electronics, automation systems are 
not only ubiquitous in the plants but collect a great deal 
of information in real time. Level-I type of data are col-
lected almost every second in industrial applications. 
Level-II type of information is the result of Level-I data 
aggregates. In case that Level-II is not installed yet, data 
aggregates can be produced from Level-I data collection 
over a specific period. Consequently, a suitable number 
of predictors and response variables are selected for a 
relatively large number of processed data. The predic-
tors are in general all the technological parameters that 
influence the response variables, the latter being the 
mechanical properties under investigation. Once the data 
are collected, data frames are constructed with columns 
being the predictors and the response variable under 
investigation. After some proper data manipulation 
the data frames are imported into the machine learning 
algorithms and an attempt is made in order to come up 
with supervised models capable of predicting the values 
of the response variables under various input predictor 
values. In addition to this, a list of the most important 
parameters that influence the property under investiga-
tion (i.e. response variable) is derived, as well. This is of 
paramount importance as based on these technological 
parameters a new set of internal rules can be deduced that 
will support the control of the property under question 
to the maximum level.

In this work, a set of data were collected in a two-
month period from three different places inside the 
Stomana plant. Specifically, data were collected from 
the meltshop, the plate mill, and the quality control 
with respect to two fundamental material properties, 

the tensile strength (Rm), and the yield stress (Re) of 
produced plates. PLC generated data were collected 
from the automation system of the plate mill; salient 
features like casting speed, casting temperature, chemi-
cal analysis, active oxygen content at EAF tapping, etc, 
were collected from the meltshop automation systems, 
as well. The main task was to deduce models that can 
identify the most important features that affect Rm and 
Re, and to predict these two properties to a measurable 
extend within statistical error. In Stomana, a relatively 
large number of grades are produced for flat products, 
so it was decided to restrict the analysis only for the 
S355-based grade products, which comprise the biggest 
percentage.

Three machine learning algorithms (models) were 
deployed. The deep learning (DL) [1], the distributed 
random forest (DRF) [2], and the gradient boosting 
method (GBM) [3] models were put into practice. The 
H2O Flow package [4] was used either directly imple-
mented in a locally created cluster or via the R language 
environment. This package can be downloaded for free 
from the internet and it is for the moment extensively 
used in about ten-thousand companies worldwide be-
coming in such a way a standard. Deep learning is 
a branch of machine learning where a multilayered 
(deep) architecture is used to map the relations between 
inputs or observed features and the outcome (response 
variable). This deep architecture makes deep learning 
particularly suitable for handling a large number of 
variables and allows deep learning to generate features 
as part of the overall learning algorithm. It is based 
on neural networks that contain a series of neurons, 
or nodes, which are interconnected and process input. 
The connections between neurons are weighted, with 
these weights based on the function being used and 
learned from the data. Activation in one set of neurons 
and the weights (adaptively learned from the data) 
may then feed into other neurons, and the activation 
of some final neurons is the prediction [5]. A GBM is 
an ensemble of either regression or classification tree 
models. Both are forward-learning ensemble methods 
that obtain predictive results using gradually improved 
estimations. Boosting is a flexible nonlinear regression 
procedure that helps improve the accuracy of trees. Weak 
classification algorithms are sequentially applied to the 
incrementally changed data to create a series of decision 
trees, producing an ensemble of weak prediction models. 
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While boosting trees increases their accuracy, it also 
decreases speed and user interpretability. The gradient 
boosting method generalizes tree boosting to minimize 
these drawbacks [3]. Finally, the distributed random 
forest (DRF) is a variation of a general technique called 
ensemble learning. An ensemble model is composed of 
the combination of several smaller simple models (often 
small decision trees). The random forest approach tries to 
de-correlate the trees by randomizing the set of variables 
that each tree is allowed to use. The final ensemble of 
trees is then bagged to make the random forest predic-
tions [6]. Although the whole description sounds a bit 
too technical, it is the proper call of the corresponding 
functions (models) that does the job.

EXPERIMENTAL

In total, 1147 cases (rows) of data were collected 
with 33 independent technological parameters (predic-
tors) influencing the two depended properties (Rm & 
Re); in this way, more than forty-thousand values were 
collected and processed. It is understandable that this 
large number of values is still prone to real world error. It 
is anticipated that this error is relatively small, of the or-
der of less than 3 %. In industrial conditions, this type of 
error still larks almost anywhere. The software was run 
in a DELL Alienware laptop, with the Intel i7-6700HQ 
CPU (8 cores) @ 2.60GHz, 16GB RAM, running under 
the 64-bit operating system Windows 10 Professional. At 
first, a cluster was generated by Java-Virtual-Machine 
64-bit-software in which the used memory size, the num-
ber of CPU-cores, and the H2O connection was created 
and established. Then the set of data (data frame) was 
imported into the cluster. Each data frame (with 1147 
rows by 34 columns for Rm –and one more similar data 
frame for Re-) was split in two data frames, randomly: 
the training data frame consisted of the 75 % of data, 
and the validation data frame consisted of the rest 25 % 
of the data. The models were trained with the 75 % of 
the data. Consequently, the derived implicit models are 
based on the training data; these models are then tested 
(validated) on the rest 25 % data, generating supervised 
models with a measurable statistical error. Two types of 
running programs were executed per model. In the first 
part of the analysis a grid search was performed in order 
to deduce the proper tuning parameters in order for the 
specific model to minimize to a more-or-less extent the 

validation mean-squared error (MSE). In the second part, 
the model was executed with the most appropriately 
selected tuning parameters in order to generate the final 
supervised model. It should be noted that the overall 
derivation of a supervised model is a time-consuming 
process. Even for the great computational capacity of the 
laptop used in this study a supervised model normally 
took more than five hours of computing time to conclude.

RESULTS AND DISCUSSION

Tensile strength (Rm) results 
As stated above, the training data are used to train 

the deployed algorithm and come up with a supervised 
model but the validation data are used for its final ac-
ceptance. The mean-squared error (MSE) is a computed 
statistical parameter that the smaller it gets the better 
the final model. Fig. 1 illustrates the computed MSE for 
the randomly selected training and validation data with 
respect to the tested tuning parameters for the deployed 
DL. It seems that the following tuning parameters give 
the most accepted results: lasso parameter (ℓ1) = 10-5, 
activation = “rectifier with dropout”, hidden = 100, 
input_dropout_ratio = 0.05, hidden_dropout_ratios 
= 0.4. In addition, cross-validation was performed; 
cross-validation is a method that divides the validation 
data in a number of groups (in this study, the number 
of groups (=folds) was chosen and kept to be 6).  For 

Fig. 1. Mean-squared error (MSE) for the tensile-strength 
(Rm) training and validation data as derived from the tun-
ing of the deep learning (DL) model. 
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Fig. 2. Actual and predicted tensile-strength (Rm) values according to the 
deduced supervised deep learning (DL) model.

Fig. 3. Mean-squared error (MSE) for the tensile-strength (Rm) training and 
validation data as derived from the tuning of the distributed random forest 
(DRF) model. 
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the final accepted model the values of R2 = 0.91, and 
MSE = 30.3 were obtained from the training data; for 
the validation data the corresponding values were 0.66, 
and 118.7. Consequently, some overfitting of the data 
takes place. This happens when the model picks up some 
noise from the training data and sticks with that. Fig. 2 
depicts the actual and predicted Rm values with respect 
to the finally accepted model. 

The tuning parameters for the DRF that seemed to be 
the best were: sample_rate = 0.96, min_rows = 4, ntrees 
= 1000, max_depth = 24, and col_sample_rate_per_tree 
= 1. Fig. 3 depicts the training and validation values 
of MSE from the searching runs. The selected model 
gave the values of R2 = 0.73, and MSE = 92.7 for the 
training data, and from the validation data the values 
of R2 = 0.70, and MSE = 107.8 were deduced. Fig. 4 
illustrates the actual and predicted Rm values based on 
the selected final model.

For the GBM the tuning parameters that showed the 
best overall results were: sample_rate = 0.5, min_rows 
= 10, ntrees = 300, max_depth = 20, learn_rate = 0.1, 
col_sample_rate = 0.5, and col_sample_rate_per_tree 
= 0.3. Fig. 5 presents the training and validation MSE 
values in the search process for the tuning parameters. 

The final accepted model gave R2 = 0.87, MSE = 44.8, 
for the training data, and R2 = 0.81, MSE = 61.2, for 
the validation data. The actual and predicted Rm values 
by the model are shown in Fig. 6.

Yield stress (Re) results
The DL tuning parameters that appeared to give the 

best model were: lasso parameter (ℓ1) = 10-5, activation 
= “rectifier with dropout”, hidden = 150, input_drop-
out_ratio = 0.10, hidden_dropout_ratios = 0.3. Fig. 
7 presents the training and validation MSE values as 
deduced during the fine tuning search process. The final 
accepted model gave R2 = 0.92, MSE = 51.1 for the 
training data, and R2 = 0.66, and MSE = 200.7 for the 
validation data. Overfitting seemed to be unavoidable 
in the deployment of the DL model. Fig. 8 illustrates 
the actual and predicted Re values according to the final 
selected DL model.

The DRF tuning parameters that seemed to give 
good results were: sample_rate = 0.96, min_rows = 4, 
ntrees= 1000, max_depth = 27, col_sample_rate_per_
tree = 0.9. Fig. 9 shows the training and validation MSE 
values obtained during the tuning process. The final ac-
cepted model gave the values of R2 = 0.66, MSE = 209.8, 

Fig. 4. Actual and predicted tensile-strength (Rm) values according to the 
deduced supervised distributed random forest (DRF) model.
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Fig. 5. Mean-squared error (MSE) for the tensile-strength (Rm) training and valida-
tion data as derived from the tuning of the gradient boosting method (GBM) model. 

Fig. 6. Actual and predicted tensile-strength (Rm) values according to the de-
duced supervised gradient boosting method (GBM) model.
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Fig. 7. Mean-squared error (MSE) for the yield-stress (Re) training and valida-
tion data as derived from the tuning of the deep learning (DL) model. 

Fig. 8. Actual and predicted yield-stress (Re) values according to the deduced 
supervised deep learning (DL) model.
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Fig. 9. Mean-squared error (MSE) for the yield-stress (Re) training and validation 
data as derived from the tuning of the distributed random forest (DRF) model. 

Fig. 10. Actual and predicted yield-stress (Re) values according to the deduced 
supervised distributed random forest (DRF) model.
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Fig. 11. Mean-squared error (MSE) for the yield-stress (Re) training and valida-
tion data as derived from the tuning of the gradient boosting method (GBM) 
model. 

Fig. 12. Actual and predicted yield-stress (Re) values according to the deduced 
supervised gradient boosting method (GBM) model.
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for the training data, and R2 = 0.75, MSE = 170.7, for 
the validation data. Actual and predicted Re values by 
the finally selected DRF model are presented in Fig. 10. 

Finally, the tuning parameters for the GBM model 
that showed the best overall results were: sample_rate 
= 0.5, min_rows = 10, ntrees = 300, max_depth = 10, 
learn_rate = 0.1, col_sample_rate = 0.3, col_sam-
ple_rate_per_tree = 0.5. Fig. 11 illustrates the training 
and validation MSE values during the tuning selection 
process. The final accepted GBM model resulted into the 
following values: R2 = 0.89, MSE = 71.0, for the training 
data, and R2 = 0.80, MSE = 130.7, for the validation 
data. Fig. 12 depicts the actual and predicted Re values 
with respect to the deduced GBM supervised model.

Variable importances
The term “variable importances” is mostly technical, 

and for this reason the ‘s’ is kept, although grammatically 
seems not to be correct. In any case, what is important is 
the list of the most important variables, or in other words, 
the technological parameters that seem to affect the 
examined mechanical properties Rm, and Re. As stated 
above, 33 independent parameters from the meltshop 
and the plate mill were selected in order to be included 
in this statistical analysis. However, only the top 10 
from the list were selected to be presented in this study. 
Tables 1 and 2 present these results for the Rm and Re 
properties. What is mostly intriguing is that some tech-
nological parameters appear in all 3 selected algorithms 

 Grade S355: Tensile strength (Rm) 

No

. 

DL DRF GBM 

1 TARGET_WIDTH Thickness WAITING_THICK_1 

2 ROLLING_MODE.MAN Ceq TARGET_LENGTH_L3 

3 Grade_S355.S355J2C+N WAITING_THICK_1 Ceq 

4 Al TARGET_LENGTH_L3 Thickness 

5 Thickness V ENTRY_WIDTH 

6 FINISHING_TEMP_PASS C C 

7 ENTRY_WIDTH Nb V 

8 HEATING_TIME REASTART_TEMP_1 REASTART_TEMP_1 

9 PASS_NUMBER ENTRY_WIDTH As 

10 TARGET_LENGTH_L3 Cu ActiveO2ppm 

 

Table 1. The 10 most important parameters for Rm as derived by the models.
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per specific mechanical property; these are presented 
with bold letters. In bold italics are presented parameters 
that appear in the two out of the three deployed models. 
There are parameters, for example ‘Thickness’, that are 
expected to be in the list. Practice has shown that the me-
chanical properties tend to increase by decreasing sizes. 
However, there are parameters that seem to be important 
and their role is not so obvious from the first point of 
view or the experience gathered throughout the years. 
One such parameter is the ‘ActiveO2ppm’ that reflect to 
the EAF ppmO levels at tapping. Although ferroalloys 
are added at tapping to deoxidize liquid steel, and active 
ppm-oxygen values actually drop below 10, it rather 
suggests the effect from the steel cleanliness related to 

carbon levels at scrap meltdown. This is something that 
is being recognized more and more by time worldwide, 
lately. Continuing discussion, Fig. 13 presents in graphi-
cal form the relationship between the two important 
parameters “Thickness”, and “REASTART_TEMP_1”. 
A 3rd-degree spline curve is shown in order to show the 
potential correlation. Only the salient features are pre-
sented, that is why it is not a solid line. The plate-mill 
automation parameter “REASTART_TEMP_1” actually 
means the temperature at which the thermomechanical 
rolling re-starts. It is obvious that by increasing the 
final plate thickness one has to wait a bit more for 
the temperature to drop at lower values. Another very 
interesting aspect between “Thickness” and “TAR-

 Grade S355: Yield stress (Re) 

No

. 

DL DRF GBM 

1 ROLLING_MODE.MAN Thickness WAITING_THICK_1 

2 PRODUCT_TYPE.DEFAU

LT 

TARGET_LENGTH_L3 TARGET_LENGTH_L3 

3 Thickness WAITING_THICK_1 Thickness 

4 ENTRY_WIDTH Nb TARGET_WIDTH 

5 Grade_S355.S355J2C+N C Ceq 

6 TARGET_WIDTH V ENTRY_WIDTH 

7 TARGET_LENGTH_L3 Ceq C 

8 PASS_NUMBER ENTRY_WIDTH V 

9 WAITING_THICK_1 REASTART_TEMP_1 Cr 

10 SPH ActiveO2ppm Mn 

 

Table 2. The 10 most important parameters for Re as derived by the models.
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Fig. 13. Scatter-plot of the plate technological parameters under rolling: “Thick-
ness” versus “REASTART_TEMP_1” parameters.

Fig. 14. Scatter-plot of the plate technological parameters under rolling: “Thick-
ness” versus “TARGET_LENGTH_L3” parameters.
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Fig. 15. Scatter-plot of the plate technological parameters under rolling: 
“WAITING_THICK_1” versus “TARGET_LENGTH_L3” parameters.

Fig. 16. Scatter-plot of the plate technological parameters under rolling: 
“PASS_NUMBER” versus “FINISHING_TEMP_PASS” parameters.
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Fig. 17. Scatter-plot of the plate technological parameters under rolling: “EN-
TRY_WIDTH” versus “PASS_NUMBER” parameters.

Fig. 18. Scatter-plot of the plate technological parameters under rolling: “TAR-
GET_WIDTH” versus “PASS_NUMBER” parameters.
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GET_LENGTH_L3” is depicted in Fig. 14. A 3rd-degree 
spline curve is shown in order to show just the salient 
features. It seems that larger target lengths were pro-
duced for smaller thickness plates and this trend most 
probably drew the “TARGET_LENGTH_L3” parameter 
into the models. Apart from the restarting temperature 
in thermomechanical rolling (TMR), the intermediate 
plate thickness at which the rolling pauses for cooling is 
critical, as well; this is the “WAITING_THICK_1” and 
together with “TARGET_LENGTH_L3” are plotted in 
Fig. 15. It seems that some correlation may exist as of 
the 5th-degree spline curve also shown. Finding relations 
between these types of parameters is beyond imagina-
tion in real practice. One requires a robust statistical 
system to pin-point these subtle details. Fig. 16 shows 
the relation between “PASS_NUMBER” and “FINISH-
ING_TEMP_PASS” which are two more important 
variables; a 3rd-degree spline curve is presented, as well. 
This is somewhat expected as the larger the number of 
passes the smaller the plate temperature is expected to 
be. Two very intriguing relationships have been found 
between “PASS_NUMBER” and “ENTRY_WIDTH”, 
and “TARGET_WIDTH” parameters. These relation-
ships are pretty subtle yet the straight lines as presented 
in Fig. 17, and 18, were deduced from strong statistical 
correlations. In fact, an analysis of variance (ANOVA) 
[7] for the straight line correlation presented Fig. 17 gave 
a standard error of 3.5 with an F-distribution value F1,1139 
= 123.9 (p < 2.2 10-16). Similarly, an ANOVA for the cor-
relation presented in Fig. 18 gave a standard error of 3.4 
with an F-distribution value F1,1139 = 194 (p < 2.2 10-16). 
After this type of analysis it may be realized why “EN-
TRY_WIDTH”, and “TARGET_WIDTH” enter into 
the picture of important predictors. They are both being 
dragged by the important parameter “PASS_NUMBER”. 
In this study, the GBM appears to have generated the 
most reliable models for the Rm and Re properties, as 
over-fitting was minimized in that case.

CONCLUSIONS
The mechanical properties of tensile strength and 

yield stress for our S355-based plate products together 
with 33 more technological parameters from the process 
involved were statistically analyzed with the help of the 
DL, DRF, and GBM algorithms supplied by the H2O 
Flow system. Models predicting the mechanical proper-
ties under investigation were derived together with a list 
of the ten most important technological parameters that 
seem to affect them. Some parameters,not considered in 
advance,  seem to play an important role in the process 
and should be followed up in the future campaigns to 
verify their effect in actual practice. 
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