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EFFECT OF SILICA NANOPARTICLES ON WATER EVAPORATION PROCESS
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ABSTRACT

This manuscript details an experimental study investigating the surface evaporation characteristics of a nanofluid 
composed of water and SiO2 nanoparticles with an average diameter of 16 nm. The study evaluated the evaporation 
rates of nanofluids with varying nanoparticle mass concentrations (0.05 %, 0.1 %, 0.2 %, 0.3 %, 0.4 %, 0.5 %, 1 %, 
3%, 5 %) using a STA PT1600 thermal analyser at a temperature of 40°C. Results indicate that SiO2 nanoparticles 
initially reduce the evaporation rate of water up to a concentration of 0.1 mass %, but this effect reverses, with the 
evaporation rate increasing at intermediate concentrations (up to 0.5 mass%). At higher nanoparticle concentrations 
(1 mass % and above), the evaporation rate stabilizes and does not change significantly. These results demonstrate 
that the evaporation properties of water can be modulated by adjusting the nanoparticle mass concentration up to 1 %.
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INTRODUCTION

In recent years, the evaporation process in water-
based nanofluids has gained significant scientific interest 
due to its fundamental importance in studying diffusion, 
surface properties, and various applications such as 
sensors, drug delivery, and water-based coatings [1 - 
4]. Additionally, the rate of water evaporation holds 
economic significance in fields ranging from plant 
protection to drug production and coatings drying. 
Several methods have been proposed and explored to 
investigate the evaporation rate from liquid surfaces [5 -
8]. With advancements in nanotechnology, it is now 
possible to control the evaporation rate of water [4, 9] 
and liquid fuel [10 - 13] by incorporating nanoparticles 
(ranging from 1 nm to 100 nm) into the base fluid, 
creating what is known as a nanofluid. Nanoparticles 
possess a high surface area to volume ratio, thereby 

influencing the physical properties of the base fluid, 
including surface tension and viscosity [14 - 17]. 

Consequently, it is presumed that the presence of 
nanoparticles affects the evaporation of the liquid, with 
careful consideration of changes in the surface tension 
coefficient during analysis. Previous studies have 
demonstrated that the addition of nanoparticles to liquids 
can lead to varied effects on the evaporation rate. For 
example, the inclusion of aluminium nanoparticles in 
ethanol decreases the droplet evaporation rate compared 
to pure ethanol [10]. The impact of aluminium oxide 
nanoparticles in pure water was investigated by 
Madhusoodanan et al., showing increased surface 
tension and reduced evaporation rate compared to pure 
water [9]. In the study of Bair et al., the evaporation of 
nanofluid droplets containing silicon dioxide particles 
(10 nm, 0.1 % mass concentration) was examined, 
revealing slower evaporation compared to bulk liquid 
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droplets [18]. However, conflicting findings regarding 
how nanoparticles alter vaporization properties have 
been reported in the literature. The inhomogeneity and 
instability of nanofluids pose challenges in obtaining 
reproducible samples [19]. At high nanoparticle 
concentrations, aggregation can occur due to Van der 
Waals forces, leading to changes in the microstructure 
or configuration [20]. This work aims to experimentally 
investigate the effect of nanoparticles on the evaporation 
rate of liquids at different concentrations, examining 
whether they enhance or reduce the evaporation process. 

EXPERIMENTAL 

In this study, nanofluids were prepared by adding 
powder containing SiO2 nanoparticles with an average 
size of 16 nm (Evonik Aerosil 200 - Fumed silica aerosol 
200, Germany) to deionized water. The powder mass 
concentrations used were 0.05 %, 0.1 %, 0.2 %, 0.3 %, 
0.4 %, 0.5 %, 1 %, 3 %, and 5 %. To achieve the desired 
nanoparticle concentration, precise measurements were 
performed using an EP 214C Explorer Pro electronic 
balance (Ohaus, USA) with an accuracy of 0.01 mg. 
Ultrasonic technology is widely used to determine 
the molecular mechanisms of processes in liquids 
and colloids, and in the case of high wave intensity, 
it is a reliable tool for the dispersion of nanoparticles 
[21 - 24]. The powder containing SiO2 nanoparticles 
and base fluid were then mechanically mixed, and an 
ultrasonic disintegrator (UD-11 automatic, 100 W and 
22 kHz) was employed to prevent initial agglomeration 
of the nanoparticles in water. The dispersal process was 
conducted for 20 min, which was determined to be the 
optimal duration for achieving uniform dispersion of the 
nanoparticles in the liquid volume [20].

The evaporation properties of the resulting nanofluid 
were investigated using an automated thermal analyser, 
specifically the STA PT1600 (LINSEIS, Germany). 
Thermogravimetric analysis was employed in this study, 
which is a widely utilized method for analysing mass 
changes and kinetics [25, 26]. This method involves 
evaluating the mass loss of the sample under specific 
temperatures or programmed temperature conditions 
[25]. Thermogravimetric analysis is an ideal tool for 
this research, as it enables accurate measurement of 
mass changes and allows for research even with small 
sample volumes. The device used in our study has a 

heating rate capability of 0.1 to 100°C min-1. The sample 
container used has an internal volume of 0.12 mL. As 
the measurement took place in an insulated room and 
the initial sample temperature was approximately room 
temperature, no gas flow was introduced during the 
measurement. To conduct the measurement, the samples 
were placed inside a container, and the container lid 
was tightly closed. The mass loss of the samples was 
measured for a duration of 20 min, while maintaining 
a constant temperature of 40°C. It is crucial to handle 
the container with great care, as any damage to it would 
require replacement and subsequent re-calibration of the 
device. Regular measurements were performed using 
deionized water to ensure that the vessel remained 
undamaged and free from contamination throughout 
the measurement. This step was necessary to maintain 
the integrity of the measurements and ensure reliable 
results. 

RESULTS AND DISCUSSION

The automated system of the device provides 
controlled thermal energy to the sample. In the case 
of the studied liquid, which is deionized water, the 
system gradually increases its temperature from 
room temperature to 40°C at a rate of 1o min-1. This 
temperature increase is achieved over 100 s period. 
Once the temperature reaches 40°C, it is maintained at 
that level for the duration of the measurement, without 
any further changes (Fig. 1).

During the initial stage of the evaporation process, 
the saturated vapor pressure inside the sample container 
gradually increases. After a certain period, the saturated 
vapor pressure reaches a constant state. This equilibrium 
state results in a constant number of vapor molecules 
being released from the liquid surface over time, leading 
to a linear relationship on the graph (Fig. 2). To investigate 
the evaporation properties, a series of measurements 
were conducted in a closed and isolated system using 
both deionized and distilled water. The measurements 
were repeated 10 times to ensure consistency. Overall, 
the results indicated that the values of the evaporation 
rates differed considerably, with deionized water having 
approximately 4 times higher evaporation rate (kdeionized = 
3.5 μg s-1) compared to distilled water (kdistilled = 0.85 μg s-1). 

The evaporation rate of deionized water was used 
as a standard for comparison.
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Data collection was performed at one second 
intervals, resulting in minimal mass loss per second but 
with some jitter and noticeable noise in the data. It should 
be noted that the data at the beginning and end of the 
measurement period may not accurately represent the 
actual rate of water evaporation. However, measurements 
taken between approximately 200 and 800 s showed small 
deviations during the scanning process, indicating more 
reliable data with minimal scatter.

The thermogravimetric analysis method was 
calibrated for a deionized liquid and the mass loss due 
to evaporation in nanofluids containing silicon dioxide 
nanoparticles was measured. The measurements were 
carried out for a duration of 20 min, and the results 
obtained for some concentrations of nanoparticles are 
presented in Fig. 3.

After numerous measurements results for pure 
deionised water, it was observed that once a certain 
time has passed, the temperature of the sample remains 
constant (isothermal, T = const) at 40°C, as shown in 
Fig. 1. This indicates that the sample reaches a thermal 
equilibrium. Consequently, the pressure of the saturated 
vapor inside the container also remains constant 
(isobaric, P = const) after a certain time.

At this state, the mass loss during evaporation of 
the sample follows a linear law, represented by Eq. (1). 

m = m0 - kt                                      (1)

In this equation, m represents the mass of the 
nanofluid after evaporation, mo is the initial mass of the 
sample, k is the evaporation rate, and t represents the 
time elapsed. The relationship between the evaporation 
rate and the time can be visualized as the angle formed 
by the 0X axis, which is equivalent to the value of k.

By calculating the evaporation rate (k) for each 
concentration case using Eq. (2):

                               (2)

where Δmi represents the mass evaporated during the 
time interval Δt, the results were obtained and are 
presented in Fig. 4. These values provide insights into 
the evaporation behaviour of the nanofluid at different 
mass concentrations. The values of k for each mass 
concentration were determined and presented in Table 1 
and Fig. 4.

Fig. 1. Temperature of a sample in the container as a 
function of the time.

Fig. 2. Evaporation rate of distilled and deionized water 
at 40°C as a function of the thermal analyser scan time.

Fig. 3. Time-dependent vapor mass change of nanofluid 
with deionized water and SiO2 nanoparticles.
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It was observed that SiO2 nanoparticles decrease 
the evaporation rate of water up to a concentration of 
0.1 mass % but exhibit an increased evaporation rate 
at intermediate concentrations (up to 0.5 mass %). 
However, at higher concentrations of nanoparticles (1 
mass % and beyond), the evaporation rate remained 
unchanged. These findings suggest that the evaporation 
properties of water can be controlled by selecting mass 
concentration of nanoparticles up to 1 %.

CONCLUSIONS

Based on the results obtained in this study it can 
be inferred that the evaporation rate of nanofluids with 

silicon dioxide nanoparticles varied depending on the 
concentration. The smallest observed evaporation rate 
was 1.2 μg s-1 in the 0.1 % nanoparticle concentration, 
while the largest rate was 3.4 μg s-1 in the 1 % 
concentration. Interestingly, no further change in 
the evaporation rate was observed beyond 1 % 
nanoparticle concentration. These findings suggest that 
the evaporation properties of water can be controlled 
by selecting the optimal concentration of nanoparticles. 
To gain a deeper understanding of the underlying 
mechanisms that influence the evaporation properties of 
water with nanoparticles, additional research is required. 
This research should focus on investigating the surface 
properties of both the nanoparticles and water. The 
analysis of water evaporation rate, using the coefficient 
of surface tension of the nanofluid, was performed on 
the results obtained from several measurements [27, 
28]. By studying the physical processes and interactions 
between nanoparticles and water at the surface level, a 
clearer understanding of the evaporation properties can 
be achieved. 

The effect of SiO2 nanoparticles on the rate of 
water evaporation depends on a variety of factors and 
can be both direct (through film formation, alteration 
of surface tension) and indirect (through changes in 
thermal conductivity and heat capacity). Investigating 
these processes requires a comprehensive approach, 
including experimental work and theoretical modelling.

In conclusion, the addition of nanoparticles to 
water offers unique opportunities for controlling and 
optimizing evaporation processes, which is important 
for various applied fields, from industrial cooling to 
nanofluid sensors.
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Mass concentration, % Evaporation rate, μg s-1

0.05 1.9
0.1 1.2
0.2 1.4
0.3 1.8
0.4 2.9
0.5 3.1
1 3.4
3 3.3
5 3.4

 Pure deionized water 3.5

Table 1. The value of evaporation rate depending on mass 
concentration.

Fig. 4. The evaporation rate as function the mass 
concentration of SiO2 nanoparticles in deionized water.
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