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METAL FRACTURE IMAGE ANALYSIS FOR AUTOMATED STRENGTH 
MEASUREMENT BY THE VISCOSITY AREA SHARE

Egor O. Volkov, Vasiliy M. Oskolkov, Olga S. Salnikova, Evgeny V. Ershov

ABSTRACT

The article proposes an approach to the automated detection of the viscosity area share in a metal fracture by 
means of using its image, which can be used in various lighting and does not require special personnel training. 
The viscosity area share is determined by means of using a set of segmentation neural networks, which includes 
the U-NET, which finds the objects under test in the image, which are metal fractures, and the Mask R-CNN, which 
finds the brittle fracture areas. Neural networks were trained on a dataset provided by the customer. Experimental 
verification of the proposed solution confirmed the possibility of automating the process of measuring the strength 
properties of the metal from fracture images with an accuracy of at least 85 %.
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INTRODUCTION

The quality of the metal used in the production 
of high-pressure pipes is subject to special strength 
requirements. Tests for the mechanical stability of the 
metal include impact bending where the nature of the 
surface of the resulting fracture is assessed to identify the 
brittle and viscosity areas, the ratio of which allows us to 
conclude how resistant the metal will be to mechanical 
overloads.

Currently, the assessment of metal fractures for 
the ratio of brittle and viscosity areas is carried out 
visually by experts at a mechanical testing laboratory, 
which implies a certain degree of a subjective error in 
the results obtained.

Brittle fracture occurs by tearing or chipping 
when the fracture plane is perpendicular to normal 
stresses. When subjected to normal stresses, an elastic 
deformation of the crystal lattice occurs, and after 
reaching the limit degree of its distortion, a successive 
rupture of interatomic bonds occurs with the separation 

of one atomic plane from another, i.e., the destruction of 
the metal. An example of ductile fracture of a pipeline 
is shown in Fig. 1.

In order to determine the viscosity and brittle fracture 
areas, drop-weight tests are carried out in accordance 
with the foreign standard API RP 5L3: Drop-Weight 
Tear Tests on Line Pipe and the Russian GOST 30456-
2021 [1]. Metal products. Steel pipes, flat products and 
coiled products. Drop-Weight Impact Bending Test [2]. 
Such tests are done in the mechanical testing laboratory 
of metallurgical plants. A blank for making specimens 
from a pipe is cut out across the longitudinal axis; if 
the specimen is made from the sheet, then it is cut out 
across the axis of the rolled sheet in the first quarter of 
the sheet width. Two specimens are made for one test 
temperature from the selected specimens [2].

Before testing, the specimens are placed in a 
thermostat bath, in which a mixture of liquid nitrogen or 
solid carbon dioxide with ethyl alcohol or liquid nitrogen 
vapor is used as a coolant, where they are steadily cooled 
to a temperature between -20˚C and -40˚C [2]. 
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Fig. 1. An example of ductile fracture of a pipeline.

The percentage of the viscosity area in the fracture is 
equal to 100 % minus the percentage of the brittle area.

The ductile fracture surface is matte and dull grey, 
has a fiber texture and is usually angled to the side 
surface of the specimen. The brittle fracture surface 
looks crystalline and shiny, with no visible signs of 
plastic deformation. Brittle fracture areas are usually 
adjacent to the notch base and the impact site [2].

Fig. 2 shows an image of two parts of a fracture, the 
viscosity area of which was measured at 70 % and 75 %, 
respectively, while the brittle area is circled in red. 
According to the standard, in determining the viscosity 
area, an error of ± 3 % and rounding up to 5 % are 
allowed [2].

The development of automated control tools would 
improve the efficiency of assessing the quality of the 
metal. 

The aim of the study is to increase the reliability 
of the assessment of the viscosity area share in metal 
fractures during automated control. 

The percentage of agreement of the results of 
automatic processing by the proposed algorithm with the 
initial opinion of experts at mechanical testing laboratory 
should be at least 85 %.

Obtaining the result of the assessment should not 
take more than 2 s on the recommended hardware 
and does not require a complex setup and calibration 
procedure.

The scientific novelty lies in the development of a 
new approach to the automated detection of the viscosity 
area shared in a metal fracture by its image, which can 
be used in various lighting and does not require special 
personnel training.

The hypothesis of the study is the possibility of 

creating an algorithm based on image processing 
methods and machine learning which can automatically 
process the results of impact bending tests with an 
accuracy of at least 85 %.

Numerous research use computer vision systems to 
resolve production metallurgy problem such as quality 
prediction [3], purpose technological process control 
[4], control specific parameters [5]. Surface defect 
detection technologies for some typical metal planar 
material products of steel, aluminum, copper plates 
and strips are used [6]. Many researchers used different 
machine vision methods to detect product quality 
defects: improved SHGA-PSO algorithm applied for the 
detection of gear defects obtained in powder metallurgy 
[7], convolutional variation auto-encoder (CVAE) for 
surface defect inspection system in real-time mode [8], 
the optical-electronic defect inspection system, using 
structured lighting for uneven defects recognition and 
detection of color change due to surface noise [9], 
method of neural network training for surface defect 
detection in real time taking into consideration neurons 
selectiveness and limited volume of visual information 
[10], algorithm of machine vision for slab notches 
detection using The Garbor filter [11], Support Vector 
Method (SVM) and Multiple Kernel Learning (MKL) 
for real-time steel inspection system [12], threshold 
segmentation algorithm for coefficient of variation to 

Fig. 2. An example of a metal fracture.
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detect defects which are cracks, holes, scratches, oil 
spots [13]. There were no notable technical solutions 
identified in metal fracture inspection automation during 
the tests; the assessment is performed visually.

EXPERIMENTAL

Method
To solve the task of automated inspection of the 

metal fractures viscosity area share, there is suggested 
an algorithm implementing the methods of image 
processing and machine learning the basis of which 
comprises the ensemble of U-Net и Mask R-CNN 
neural networks [14, 15]. The main operational stages 
are as follows:

1. Obtaining metal fracture digital images without 
the use of special lighting methods by conventional 
means: photo camera.

2. Initial image fracture segmentation: the 
convolutional U-Net neural network is used to search 
for the image area showing the fracture; the training set 
is a set of original images (Fig. 3) and a mask (Fig. 4), 
on which the fracture is highlighted in white [14].
The network is trained by stochastic gradient descent 
based on input images and their corresponding 
segmentation maps. Due to convolutions, the output 
image is smaller than the input one by a constant border 
width, so boundary features are lost.

The U-Net network can work with images of any 
size but given the proportions of the processed images 
and acceptable visibility of metal fractures, a fixed input 
image size is 512 × 256.

3. Brittle-ductile fracture areas classification. The 
Mask R-CNN neural network is used, with three classes 
assigned for its training: the first class is the fracture 
area to be analysed, the second is the area with absolute 
brittleness, which is usually an inverse fracture, and 
the third class is “triangles”, which are the alternating 
brittle-ductile areas [15]. 

The sequence of the Mask R-CNN neural network 
image processing is as follows: 

1) image normalization: the value of the “average” 
pixel brightness is deduced; it was calculated on the 
basis of the pixel brightness average value of all images 
from the training set, from all pixels brightness of the 
input image;

2) image scaling: firstly, the least of the image sides 

Fig.3. Image supplied to the neural network input.

Fig. 4. Mask image acting as a feature vector.

is taken, which is scaled to the target size; the other 
side changes in proportion to the lesser side changes to 
keep the image proportions. However, if resulting from 
scaling the bigger side exceeds the established maximum 
size, its dimensions will change to maximum possible 
ones while the lesser side will change proportionally;

3) indention addition to the image: indentions are 
added on the right and from below the image, taking 
into consideration the point that the coordinate system 
starts from the left upper corner which allows not to 
convert the resultant co-ordinates any further; indention 
addition is necessary for each side dimensions to be a 
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multiple of 32 pixels;
4) decoding of limiting rectangles and the filtering 

of the limiting rectangles transcending the limits of the 
image;

5) deletion of the areas intersecting for more than 
the established threshold;

6) unification of the results as the previous stages 
are carried out separately for each feature map;

7) forming the results of the brittle fracture area 
detection.

An example of the image with highlighted brittle 
areas is shown in Fig. 5.

RESULTS AND DISCUSSION

The peculiarities of the Mask R-CNN neural network 
training

Before being supplied for training, images are scaled 
to one size of 1024×1024, while maintaining the aspect 
ratio, to perform batch processing of frames. 

During the training of the neural network, five 
components can be distinguished, which make up the 
resulting loss function:

•	 rpn_class_loss, which shows how well the 
network separates the background from the objects to 
be segmented;

•	 rpn_bbox_loss, which shows how well the 
network localizes the position of objects;

•	 mrcnn_bbox_loss, which shows how well the 
network determines the position of the detected objects;

•	 mrcnn_class_loss, which shows how well the 
network classifies the detected objects;

•	 mrcnn_mask_loss, which shows how well the 
network segments the detected objects, that is, how well 
the mask is formed.

The resulting loss is calculated as the sum of these 
components. These network learning quality metrics are 

Fig. 5. Results of brittleness detection by the Mask R-CNN 
neural network.

Fig. 6. Value of the loss metric during the training of the Mask R-CNN model with the training set.
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calculated for both the training set and the test set. Fig. 
6 shows the value of the aggregated metric of the loss 
function of the Mask R-CNN network with the training 
set, and Fig. 7 on the test set.

In Fig. 6, the loss function on the training set 
gradually decreases with each new training epoch, 
while on the test set (Fig. 7) its value does not change 
monotonously, with the minimum loss value (0.08) 
reached at epoch 15 and the value of this metric also 
minimal at epoch 20 (0.11). Weights from this epoch 
are preferable, since the value of the metric is minimal 
on the training set. 

The WPF (Windows Presentation Foundation) 
library was used to develop the graphical user interface. 
It is a type of an interface with free navigation where 
the user can freely select the necessary operations, 
interact with it using various buttons and other controls 
to perform a particular task.

To determine the percentage of the viscosity area 
577 photographs were obtained made by the mechanical 
testing laboratory personnel where impact bending tests 
are done, and viscosity value is analysed. The test set 
photographs were selected so that they could cover 
different situations met on the presented photographs.

To find a metal fracture in the image, the U-NET 
neural network was trained on the generated set. 

The accuracy of the model is quite high (95 %), 
although there are gaps in the resulting mask and 
false detections occur from time to time, which can be 

eliminated in post-processing. 
The Mask R-CNN neural network solved the 

problem of finding a control area where the brittle 
area was to be determined. The neural network tends to 
highlight smaller areas than those that were marked out, 
especially in the areas of brittleness-ductility alternation. 
It is quite difficult to determine visually how accurately 
the network worked due to the lack of clear boundaries 
of brittle areas on the fracture surface. The accuracy of 
detection and classification of brittle areas averaged 98 % 
for all classes. 

The results with the test set in 87 % of cases agree 
with the expert assessment, which corresponds to the 
requirements stated above.

CONCLUSIONS

The proposed technical solution makes it possible 
to automate the determination of the viscosity area, 
increase the objectivity of the results obtained, and 
reduce the time spent by the mechanical testing 
laboratory personnel.

Visual assessment of metal fractures for the ratio of 
brittle and viscosity areas requires mechanical testing 
laboratory personnel to have perfect knowledge of 
GOST 30456-2021 and be skilful to assess fractures 
visually. A new approach to the automated detection of 
the viscosity area share in a metal fracture by its image 
allows working in various lighting conditions and does 

Fig. 7. Value of the loss metric during the training of the Mask R-CNN model with the test set.



Journal of Chemical Technology and Metallurgy, 60, 4, 2025

678

not require special personnel training.
Thus, the reliability of the assessment of the 

viscosity area share in metal fractures is gained during 
automated control. 

As for the application prospects of the suggested 
approach one should mention the use at high-loaded 
parts production in mechanical engineering, construction 
and transport sphere.
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